

PREFEITURA MUNICIPAL DE PORTO ALEGRE SECRETARIA MUNICIPAL DE OBRAS E VIAÇÃO ESCRITÓRIO MUNICIPAL DE PROJETOS E OBRAS

PLANO DE INVESTIMENTOS 2001

ELABORAÇÃO DOS PROJETOS GEOMÉTRICO, DE PAVIMENTO E DE DRENAGEM DE VIAS DO LOTE 9 – REGIÃO CRISTAL E REGIÃO BALTAZAR

ACESSO AO NÚCLEO 23 – LOTEAMENTO RUBEM BERTA TRECHO: A partir da Rua Domênico Feoli, (antiga Rua C) até 70 metros além.

VOLUME ÚNICO

ACL Assessoria & Consultoria Ltda

JULHO/2002

PREFEITURA MUNICIPAL DE PORTO ALEGRE SECRETARIA MUNICIPAL DE OBRAS E VIAÇÃO ESCRITÓRIO MUNICIPAL DE PROJETOS E OBRAS

PLANO DE INVESTIMENTOS 2001

ELABORAÇÃO DOS PROJETOS GEOMÉTRICO, DE PAVIMENTO E DE DRENAGEM DE VIAS DO LOTE 9 – REGIÃO CRISTAL E REGIÃO BALTAZAR

ACESSO AO NÚCLEO 23 – LOTEAMENTO RUBEM BERTA TRECHO: A partir da Rua Domênico Feoli, (antiga Rua C) até 70 metros além.

VOLUME ÚNICO

ACL Assessoria & Consultoria Ltda

JULHO/2002

ÍNDICE

ÍNDICE

APRESENTAÇÃO	1
1 – INTRODUÇÃO	4
2 – PROJETO GEOMÉTRICO	5
2.1 – Estudos Topográficos	6
2.1.1 – Considerações Gerais	
2.1.2 – Diretrizes para Execução dos Levantamentos Topográficos	
2.2 – Cadernetas de Campo	
2.3 – Projeto Planialtimétrico	
2.4 – Cálculo de Volumes de Terraplenagem	24
2.4.1 – Análise do Perfil Longitudinal do Projeto Geométrico e das Seções	
Transversais do Terreno Natural	
2.4.2 – Desenhos dos Gabaritos	
2.4.3 – Processo de Cálculo dos Volumes	
2.5 – Notas de Serviço de Pavimentação	
2.6 – Documentário Fotográfico	
2.7 – Desenhos do Projeto Geométrico	25
3 – PROJETO DE PAVIMENTAÇÃO	
3.1 – Estudos Geotécnicos	
3.1.1 – Investigações Geotécnicas	
3.1.2 – Determinação do Índice Suporte de Projeto	
3.1.3 – Relatório da EPTC	
3.2 – Determinação do Número "N"	
3.3 – Dimensionamento da Estrutura do Pavimento	
3.4 – Substituição de Solos Inadequados	
3.5 – Especificações Técnicas	44
4 – PROJETO DE DRENAGEM SUPERFICIAL	
4.1 – Estudos Hidrológicos	
4.2 – Memória Justificativa	
4.2.1 – Captação	
4.2.2 – Traçado da Rede	
4.2.3 – Cálculo das vazões	
4.2.4 – Locais de Lançamento	
4.3 – Cálculos Hidráulicos	
4.3.1 – Sistemática de Cálculo	
4.4 – Especificações Técnicas4.5 – Desenhos do Projeto de Drenagem Pluvial	
4.5 – Desemilos do Frojeto de Dienagem Fluvial	52
5 – ORCAMENTO	54

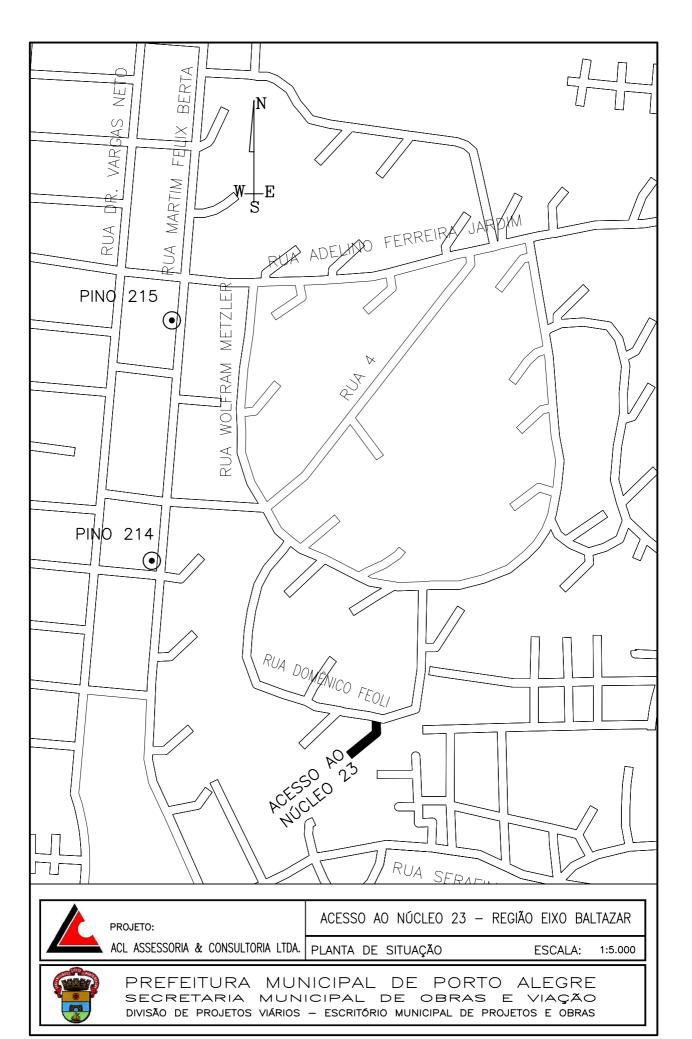
APRESENTAÇÃO

C:ISMOV/n23iMemo Ac N23.doc 1

APRESENTAÇÃO

O presente documento é decorrente do contrato firmado entre o Município de Porto Alegre, através da PMPA/SMOV, e a empresa ACL Assessoria & Consultoria Ltda, para elaboração dos Projetos Geométricos, de Pavimento e de Drenagem de Vias especificadas no Lote 9, referente à Tomada de Preços N° 91/01 - Edital 02.081114.01.0.

O Relatório, em volume único, apresenta especificamente o Projeto de Engenharia visando a pavimentação e implantação das obras de drenagem pluvial do **Acesso ao Núcleo 23 – Loteamento Rubem Berta**, segmento a partir da rua Domenico Feoli (antiga Rua C) até cerca de 70m além, Região Eixo da Baltazar (14), zona norte da cidade de Porto Alegre/RS. O mapa a seguir ilustra a macrolocalização do segmento de projeto.


Os estudos e projetos foram desenvolvidos no período de março/2002 a julho/2002, em conformidade com a Ordem de Serviço N° 23/2002 expedida na data de 7/03/2002.

Porto Alegre, 8 de julho de 2.002.

Glauber Candia Silveira Eng. Coordenador – Crea/RS 69.355-D

2

C:\SMOV\n23\Memo Ac N23.doc

1 - INTRODUÇÃO

A pavimentação do Acesso ao Núcleo 23 – Loteamento Rubem Berta, a partir da rua Domenico Feoli (antiga Rua C) até cerca de 70m além, é uma reivindicação antiga da comunidade local diretamente beneficiada, através da apresentação de demandas junto ao Orçamento Participativo.

A região onde se insere o projeto, particularmente o Loteamento Rubem Berta – um dos mais populosos da capital, tem sido alvo de sucessivas melhorias paulatinas da infraestrutura, promovidas pela Prefeitura da cidade de Porto Alegre, particularmente quanto à execução de obras de drenagem e canalização de córregos e arroios, assim como obras de pavimentação urbana. Estas obras, além de permitir a livre drenagem das águas das chuvas, evitando a possibilidade de alagamentos e o surgimento de doenças, também se refletem na melhoria da qualidade de vida da população local, bem como na valorização imobiliária, entre outros aspectos.

No caso específico da rua em projeto, destaca-se que atualmente (em abril/2002) o Acesso ao Núcleo 23 se encontra sem saída e somente com acesso local não pavimentado, que atende diversos blocos.

O subleito da rua apresenta-se aparentemente estável, sendo que as sondagens não detectaram a presença de lençol freático em nenhum dos furos. Praticamente em toda a extensão existe camada de saibro granítico lançada e estabilizada com o tráfego local. Todavia, se verificou que há deficiência de drenagem superficial, sendo relatado pelos moradores eventuais alagamentos em épocas de chuvas intensas.

Desta forma, em continuação e em conformidade com o Termo de Referência, apresenta-se o projeto de engenharia propriamente dito, do segmento de rua em apreço. Em atendimento às orientações da fiscalização da SMOV, o memorial foi desmembrado nos seguintes tópicos principais, a seguir descritos e justificados:

- projeto geométrico;
- projeto de pavimentação; e
- projeto de drenagem pluvial.

C:ISMOV/n23IMemo Ac N23.doc

2 - PROJETO GEOMÉTRICO

C:\SMOV\n23\Memo Ac N23.doc 5

2 - PROJETO GEOMÉTRICO

2.1 - Estudos Topográficos

2.1.1 - Considerações Gerais

O Acesso ao Núcleo 23 – Loteamento Rubem Berta, localiza-se na zona norte da cidade de Porto Alegre/RS, desenvolvendo-se aproximadamente no sentido leste-oeste, conforme planta de situação apresentada nos Desenhos do Projeto.

O trecho projetado inicia na rua Domenico Feoli (antiga Rua C) e estende-se até as proximidades dos Blocos de Alvenaria existentes, numa extensão de cerca de 70m.

Conforme informações recebidas da EPO/SMOV, a largura total da via planejada é de 9m, incluindo arruamento e passeios. O segmento final apresenta um alargamento com vistas a um viradouro ("cul de sac").

2.1.2 - Diretrizes para Execução dos Levantamentos Topográficos

Os estudos topográficos foram executados de acordo com o estabelecido nos itens 2.2 a 2.6 do Termo de Referência e às orientações complementares da fiscalização da SMOV.

a) Bases Cartográficas

As bases cartográficas utilizadas foram as fornecidas pela PMPA, conforme documentação coletada junto à Cartografia/PMPA. Nelas constam as referências planialtimétricas do município, também reproduzidas nos desenhos do projeto.

b) Cadastro

O cadastro foi realizado com o processo de irradiação com ângulo e distância, contemplando toda a área de influência do projeto.

Para possibilitar uma adequada caracterização dos elementos indispensáveis aos estudos e projetos, foram cadastradas todas as:

- propriedades e edificações intervenientes com sua numeração;
- as obras complementares tais como cercas, muros, rampas de acesso, arborização de grande e médio porte;
- cotas de soleiras mais significativas;
- redes de serviço público, como redes telefônicas e elétricas;
- cruzamentos e outros elementos interessantes ao projeto/obra.

No caso de prédios comerciais, foi observado o tipo e o ramo do negócio, para fins de avaliação do tráfego local de caminhões.

C:ISMOV/n23lMemo Ac N23.doc

As áreas eventualmente atingidas foram levantadas, com vistas a fornecer elementos para possíveis desapropriações.

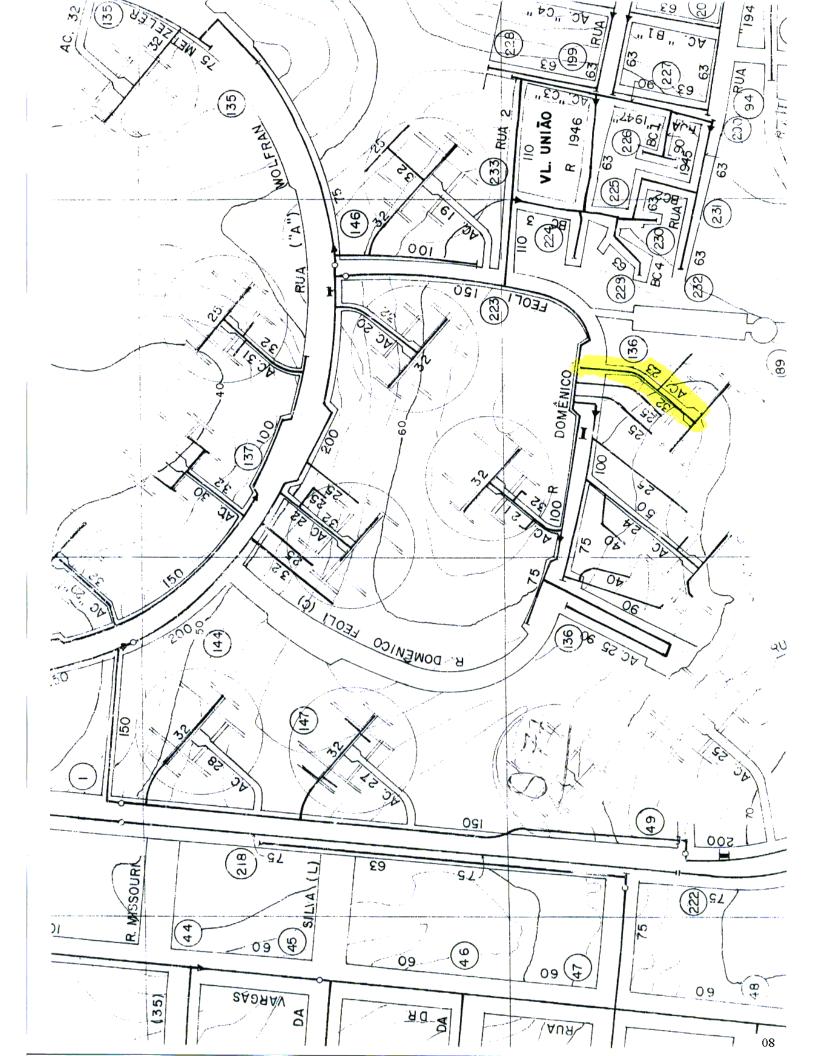
c) Definição de Traçado e Limites de Projeto

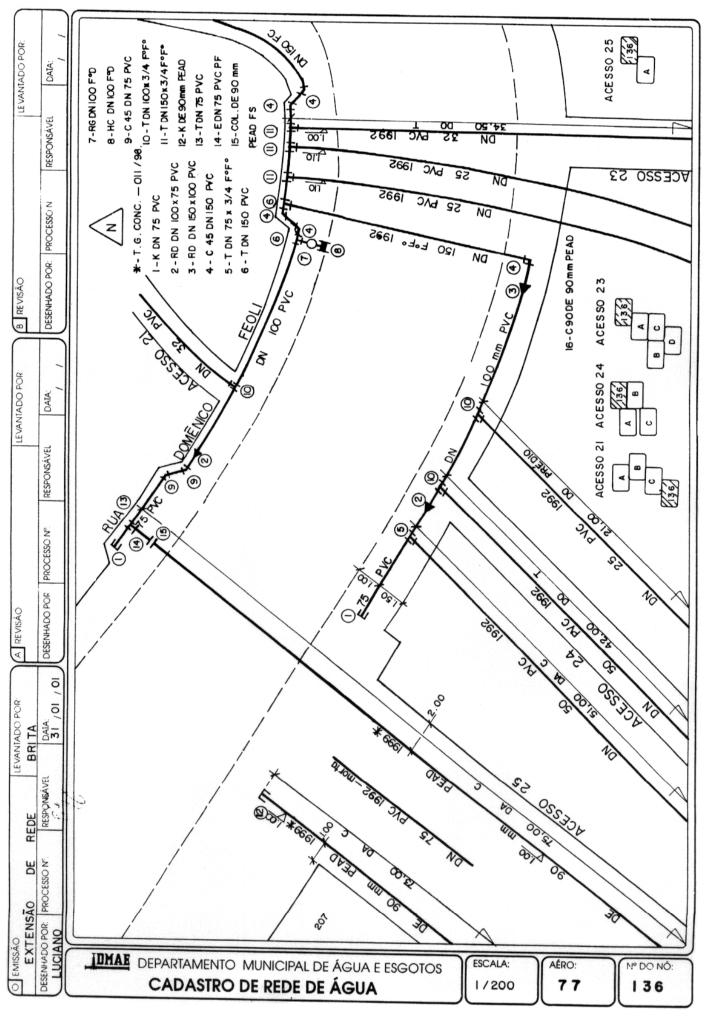
As diretrizes existentes serviram de base para a definição do traçado. Estas constam nos Mapas Cadastrais fornecidos pela própria Prefeitura. Estes elementos foram tomados como base para definir os comprometimentos do município com relação a alinhamentos e construções já liberadas.

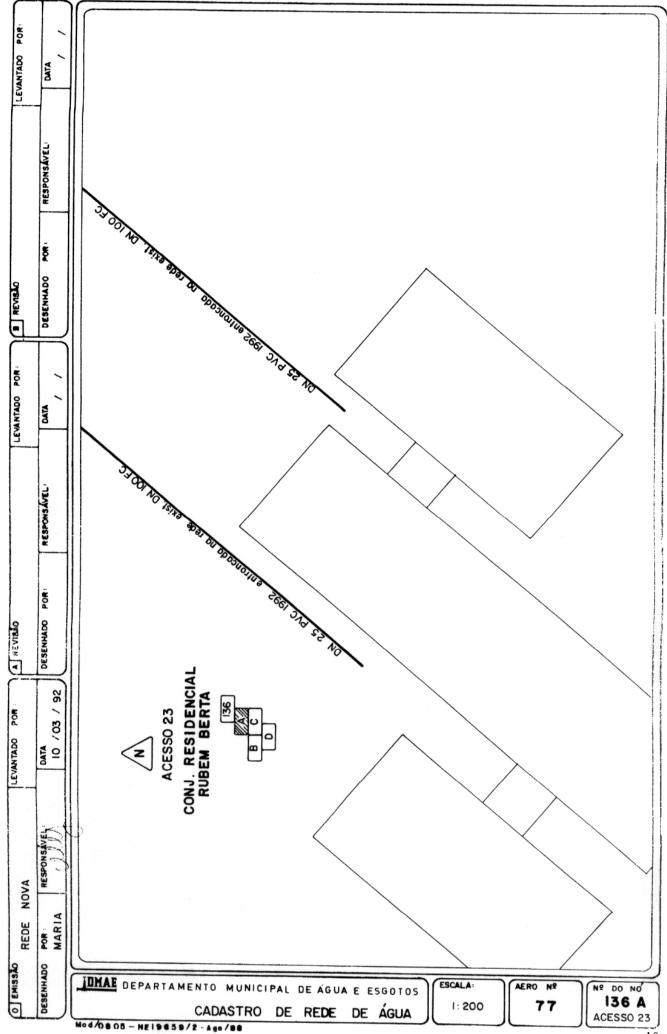
e) Altimetria

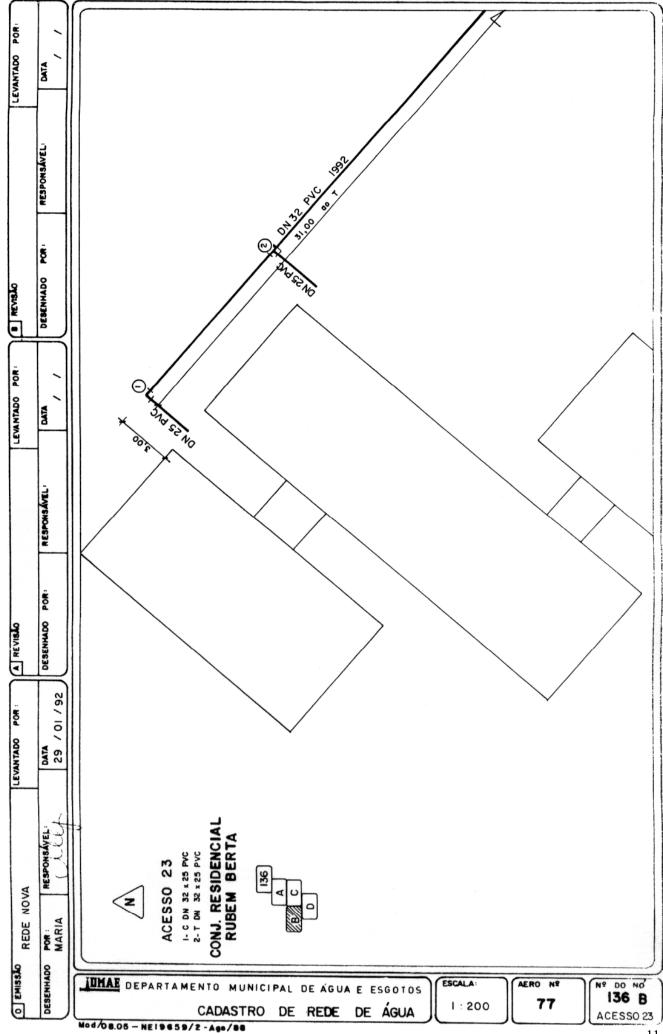
Para estabelecimento da Referência de Nível (RN), foi adotado como referência à altitude (cota) de RNs fornecidos pela Prefeitura, inclusive com o transporte de cotas (e coordenadas) dos pinos mais próximos do local do projeto.

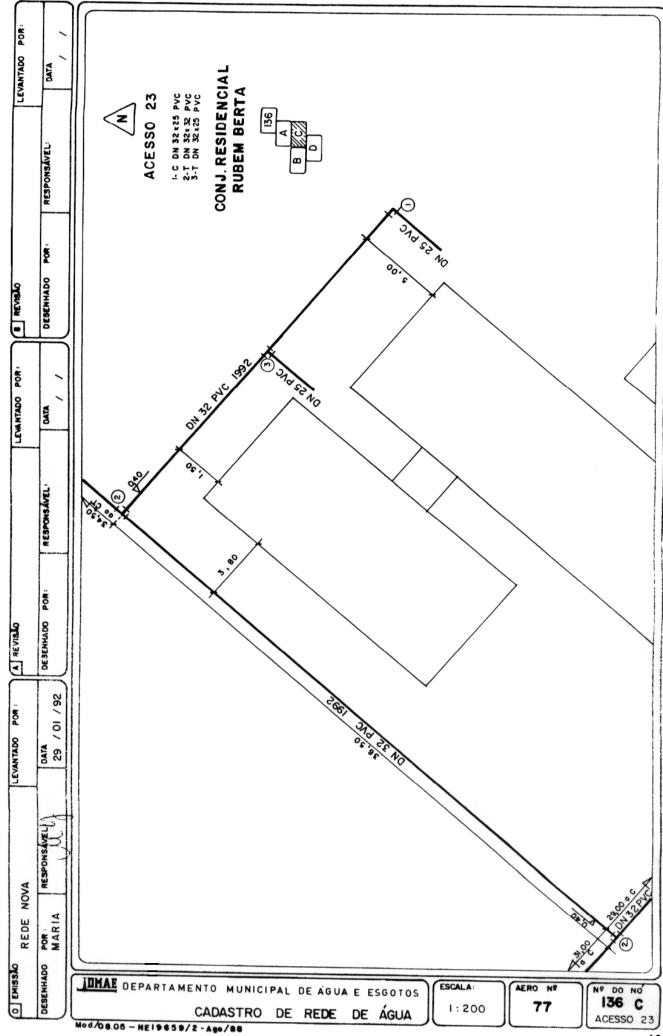
Complementarmente foram levantados planialtimetricamente soleiras de casas, rampas de acesso e outros elementos intervenientes com o projeto.

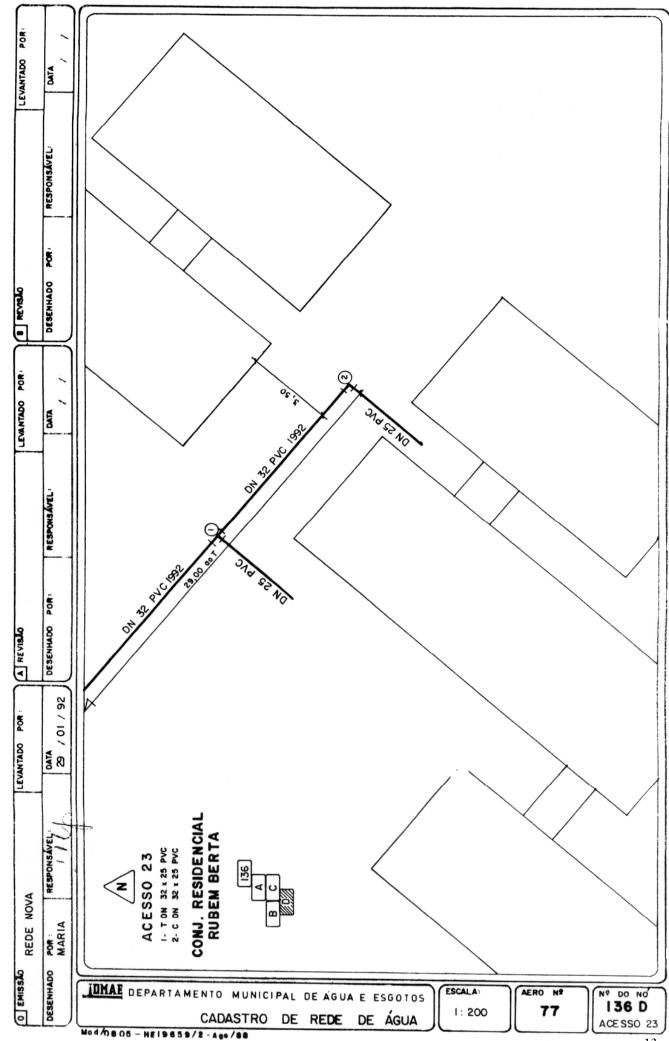

Para definição do projeto altimétrico foram executados nivelamento e contranivelamento do eixo da rua e o seccionamento de 20 em 20 metros, permitindo a elaboração de perfil e seções do eixo projetado.


f) Cadastro de Redes

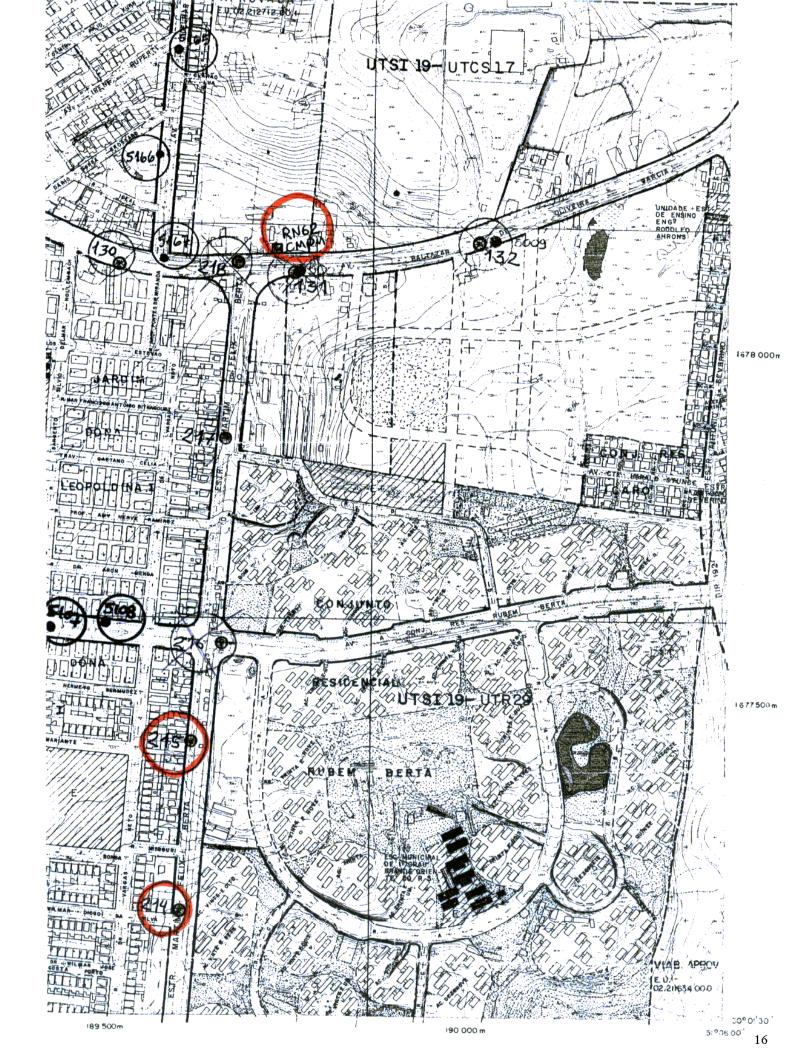

Foram levantados todos os dispositivos de drenagem, visando à obtenção dos dados necessários à avaliação das condições de funcionamento dos mesmos, para posterior substituição ou aproveitamento. No projeto de drenagem apresenta-se desenho com cadastro fornecido pelo DEP, juntamente com avaliação das bacias de contribuição definidas pelo projeto.


A seguir, apresentam-se elementos de cadastro da rede de água, fornecidos pelo DMAE.


C:ISMOV/n23lMemo Ac N23.doc



2.2 - Cadernetas de Campo


Em seqüência são apresentados os elementos de referência planialtimétrica (fornecidos pela PMPA) e os levantamentos realizados pela Consultora, incluindo as cadernetas de:

- · transporte de cotas e coordenadas;
- cadastramento topográfico;
- nivelamento do eixo; e
- seções transversais.

C:ISMOV/n23iMemo Ac N23.doc 14

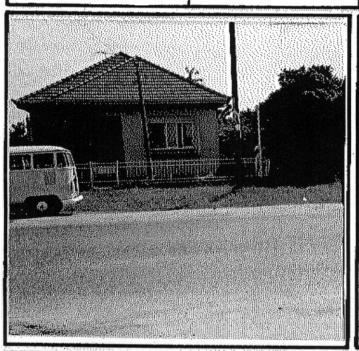
Rede de Referência Planimétrica

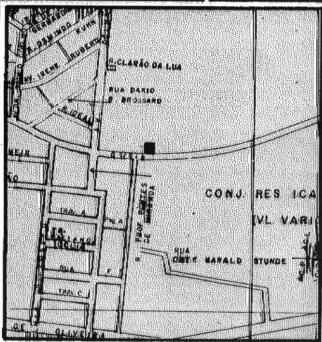
		Datum:	Carta Geral		Datum	: SAD 69
Nº do	Pino	Abscissas	Ordenadas	МС	Abscissas	Ordenadas
2987.2C	212	189.610,219	1.676.874,712	84	489.658,098	6.678.208,072
2987.2C	213	189.583,251	1.676.994,267	84	489.631,144	6.678.327,579
2987.2C	214	189.607,645	1.677.192,981	85	489.655,532	6.678.526,210
2987.2C	215	189.621,288	1.677.432,359	85	489.669,175	6.678.765,489
2987.2C	216	189.646,027	1.677.581,936	85	489.693,907	6.678.915,004
2987.2C	5545	188.428,686	1.677.069,644	65		
2987.2C	5546	188.427,167	1.677.300,917	65		
2987.2F	15	176.793,178	1.670.357,869	12	476.846,200	6.671.694,197
2987.2F	16	176.719,777	1.670.062,999	12	476.772,823	6.671.399,450
2987.2F	20	176.096,248	1.669.096,766	0	476.149,530	6.670.433,629
2987.2F	21	176.040,038	1.668.755,241	0	476.093,336	6.670.092,246
2987.2F	5004	176.796,385	1.669.697,908	11	476.849,392	6.671.034,508
2987.2K	7	177.462,789	1.668.474,626	39	477.515,494	6.669.811,716
2987.2K	8	177.053,411	1.668.326,482	29	477.106,282	6.669.663,642
2987.2K	9	176.800,277	1.668.213,567	19	476.853,250	6.669.550,779
2987.2K	10	176.523,682	1.668.117,147	18	476.576,767	6.669.454,405

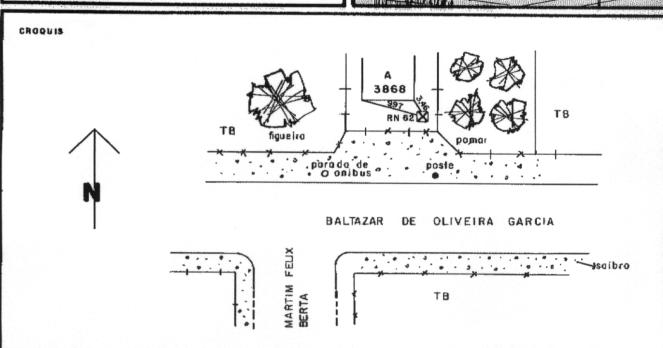
CONVÊNIO PMPA - METROPLAN SECRETARIA DO PLANEJAMENTO MUNICIPAL FUNDAÇÃO METROPOLITANA DE PLANEJAMENTO

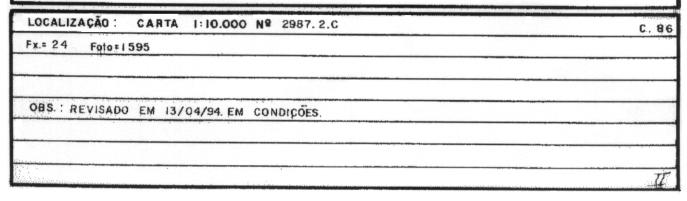
RN Nº

Q62


DESCRIÇÃO	DA	REFERÊNCIA	DE	NÍVEL


CMPM 44 052


DATUM ALTIMÉTRICO
MAREGRAFO DE IMBITUBA


43.712

ALTITUDE

LEVANTAMENTO CADASTRAL

ACL ASSESSORIA & CONSULTORIA LTDA.

Projeto: Acesso ao Núcleo 23 - Loteamento Rubem Berta

Trecho: a partir da Rua Domênico Feoli (antiga Rua C) até 70m além.

Base Altimétrica

RN 062 - Cota: 43,712m

Local: Av. Baltazar de Oliveira Garcia, 3868

fonte: SPM

Base Planimétrica

Rede de Referência Planimétrica SPM Pinos 2987.2C 214 e 215

Datum: Carta Geral

N°.	Ordenadas	Abscissas	Cota (m)	Descrição
1	1676955.7500	189861.9370	59.526	557 PF2+1988
2	1677004.0054	189928.8760	59.526	563 PA563
3		189928.8760	59.630	563 PA563
<u> </u>	1677004.0054 1677008.1200	189912.5100	60.050	564 DIV
4	1677008.2700	189908.6300	60.830	565 CASA
6			60.840	566 DIV
7	1677008.3800 1677007.5700	189907.3900 189907.1000	60.420	567 CASA
8	1677007.5700	189906.8300	60.420	568 GRADE
9	1677004.4600	189911.0700	59.860	569 PAV
10	1677004.3400	189909.0400	59.960	570 PAV
11	1677004.3800	189905.7900	60.080	570 PAV 571 PAV
12	1677004.7500	189903.7900	60.080	571 PAV 572 PAV
13	1677004.7500	189902.2600	60.190	572 PAV 573 PM
14	1677007.6100	189903.7100	60.310	574 GRADE
15	1676998.7600	189907.9700	59.990	575 TELE
16	1676997.4300	189909.7300	59.890	576 PAV
17	1676996.9900	189908.1500	60.070	577 PM
18	1676997.4800	189905.6000	59.980	578 PAV
19	1676997.9800	189901.2300	60.050	579 PAV
20	1677001.6750	189900.3640	60.120	556 0+000
21	1676947.9893	189855.4435	59.671	580 0+070
22	1677001.6750	189900.3640	60.120	556 0+000
23	1676995.0100	189908.8400	60.090	581 CASA
24	1676995.5000	189899.9200	60.310	582 PASS
25	1676996.2400	189893.7700	60.290	583 PASS
26	1676999.1300	189893.2000	60.110	584 PAV
27	1677000.3800	189885.7800	60.170	585 PAV
28	1677001.4800	189875.9100	60.290	586 PM
29	1677002.1600	189874.7600	60.060	587 BL
30	1677000.0800	189866.5900	60.200	588 DIV
31	1676999.5500	189873.0000	60.260	589 GRADE
32	1676997.4800	189886.2300	60.180	590 GRADE
33	1676993.9800	189885.3200	60.200	591 GRADE
34	1676990.6400	189884.4300	60.010	592 GRADE
35	1676987.0800	189882.3200	59.560	593 GRADE
36	1676981.3200	189881.9500	59.460	594 PM
37	1676967.2600	189865.7100	59.480	595 GRADE
38	1676961.9300	189872.9300	59.420	596 MURO
39	1676964.2900	189874.8200	59.230	597 MURO
40	1676962.4800	189877.1500	58.850	598 MURO
41	1676964.8600	189879.1800	58.440	599 CASA
42	1676977.0800	189889.3800	58.350	600 CASA
43	1676973.2800	189893.9600	58.320	601 CASA
44	1676979.4300	189888.7200	58.550	602 -
45	1676979.9200	189888.8500	59.550	603 MURO
46	1676990.4900	189873.3500	58.730	604 CASA
47	1676986.7000	189877.9000	58.610	605 CASA
48	1676974.4800	189867.6600	58.550	606 CASA
49	1677010.3800	189900.7400	60.400	607 MURO
50	1677008.9500	189902.7900	60.340	608 CASA
51	1677010.4900	189898.6900	60.370	609 PAV
52	1677011.8180	189898.2026	60.737	610 RN
53	1677012.4300	189897.2400	60.460	611 CASA
54	1677013.9500	189893.8900	60.500	612 CASA
55	1677014.9000	189887.6500	60.550	613 CASA
56	1677015.1900	189885.3200	60.520	614 DIV
57	1677012.4700	189886.0400	60.340	615 PAV
58	1676987.6700	189906.9400	59.760	616 CASA
59	1676947.9893	189855.4435	59.671	580 0+070

Cadermetas-Acesso23 cadastro

LEVANTAMENTO CADASTRAL

ACL ASSESSORIA & CONSULTORIA LTDA.

Projeto: Acesso ao Núcleo 23 - Loteamento Rubem Berta

Trecho: a partir da Rua Domênico Feoli (antiga Rua C) até 70m além.

Base Altimétrica

RN 062 - Cota: 43,712m

Local: Av. Baltazar de Oliveira Garcia, 3868

fonte: SPM

Base Planimétrica

Rede de Referência Planimétrica SPM Pinos 2987.2C 214 e 215

Datum: Carta Geral

60	N°.	Ordenadas	Abscissas	Cota (m)	Descrição
61					
62					
63					
64 1676938,9400 189877,8100 59,800 621 MURO 65 1676944,3100 189872,200 59,760 622 MURO 66 1676944,3100 189873,1400 59,760 622 MM 67 1676962,9900 189862,5200 59,750 624 PM 68 1676953,7500 189861,2500 59,550 625 LIXO 69 1676955,1200 189861,2500 59,550 625 LIXO 70 1676956,5000 189863,9500 59,520 626 LIXO 71 1676966,5000 189864,3400 59,400 628 MURO 72 1676974,5500 189864,3400 59,400 628 MURO 73 1676976,9400 189864,9700 59,370 630 CASA 74 1676964,8300 189864,7000 59,370 630 CASA 75 1676964,9900 189849,1300 59,580 632 PM 76 1676967,200 189839,3400 59,740 633 CASA 77 1676964,9900 189849,1300 59,580 632 PM 78 1676964,1200 189839,5100 59,580 634 MURO 79 1676947,8300 189847,0800 59,070 636 MURO 80 1676947,8300 189847,0800 59,070 636 MURO 81 1676946,800 189847,0800 59,070 636 MURO 82 1676964,800 189849,5000 59,070 636 MURO 83 1676964,800 189849,5000 59,070 636 MURO 84 1676964,800 189849,500 59,070 636 MURO 85 1676944,8000 189849,500 59,070 636 MURO 86 1676947,800 189847,800 59,070 636 MURO 86 1676944,8000 189849,500 59,070 636 MURO 86 1676944,8000 189849,500 59,070 636 MURO 87 1676944,8000 189849,500 59,070 636 MURO 88 1676944,8000 189849,5000 59,070 636 MURO 88 1676944,8000 189865,5000 59,070 636 MURO 88 1676944,8000 189867,5000 59,070 636 MURO 89 1676947,5000 189867,5000 59,070 636 MURO 80 1676947,5000 189867,5000 59,070 636 MURO 80 1676947,5000 189867,5000 59,070 636 MURO 81 1676946,5000 189867,5000 59,070 636 MURO 82 1676937,0000 189867,5000 59,070 640 MURO 84 1676948,5000 189867,5000 59,070 640 MURO 85 1676944,5000 189867,5000 59,070 640 MURO 86 1676947,5000 198867,5000 59,070 640 MURO 87 1676947,5000 198867,5000 59,070 640 MURO 88 1676948,5000 198967,5000 59,000 69,000 640 MURO 89 1676937,6000 198967,5000 59,000 PL144 CASA 99 1676937,6000 198967,5000 59,000 PL144 CASA 100 167697,2000 198983,5000 59,000 PL144 CASA 100 167697,7000 198983,5000 59,000 PL145 CASA 100 1676997,5000 19898					
65					
66 1676944.3100 189873.1400 59.760 623 PM 67 1676952.9900 189862.2000 59.750 624 PC 68 1676953.7500 189861.2500 59.550 625 LIXO 69 1676955.1200 189861.2500 59.520 626 LIXO 70 1676956.3000 189864.2500 59.520 626 LIXO 71 1676956.3000 189864.9400 59.400 628 MURO 72 1676976.4500 189864.9400 59.400 628 MURO 73 1676970.9400 189849.7900 59.970 631 CASA 74 1676964.8300 189844.7000 59.470 631 CASA 75 1676964.9900 189849.1300 59.580 632 PM 76 1676964.9900 189849.1300 59.580 632 PM 77 1676964.9900 189849.1300 59.580 632 PM 78 1676964.7900 189838.8500 59.580 632 PM 78 1676964.100 189839.5100 59.580 634 MURO 78 1676964.200 189839.5100 59.580 634 MURO 80 1676947.7900 189847.8000 59.770 636 MURO 81 1676964.8000 189847.2400 59.620 637 MURO 81 1676964.8000 189847.8000 59.970 636 MURO 82 1676950.4200 189839.7800 59.950 637 MURO 83 1676944.8000 189847.8000 59.950 638 CASA 84 1676939.6600 189847.8000 59.950 639 CASA 85 1676944.8000 189839.7800 59.950 638 CASA 86 1676950.4200 189839.7800 59.950 639 CASA 86 1676950.4200 189839.7800 59.950 639 CASA 86 1676950.4200 189839.7800 59.950 639 CASA 87 1676950.4200 189839.7800 59.950 639 CASA 86 1676945.2000 189867.2000 59.950 639 CASA 87 1676945.2000 189867.2000 59.970 640 MURO 86 1676945.2000 189867.2000 59.970 640 MURO 87 1676945.2000 189867.2000 59.970 640 MURO 88 1 1676945.2000 189867.2000 59.970 640 MURO 89 167693.4000 189867.2000 59.900 646 MURO 90 167693.4000 189867.2000 59.900 646 MURO 90 167693.4000 189867.2000 59.900 646 MURO 91 167693.2000 189867.2000 59.900 PL144 CE 96 1676974.7100 189865.2000 59.900 PL144 CASA 99 1676977.8000 189867.2000 59.900 PL145 CASA 100 1676977.8000 189867.2000 59.900 PL144 CASA 101 1676977.8000 189867.2000 59.900 PL144 CASA 102 1676973.8000 189867.2000 59.900 PL144 CASA 103 1676988.8000 189867.2000 59.900 PL145 CASA 104 1676978.8000 189867.2000 59.900 PL145 CASA 105 1676973					
67 1676952 9900 189862 5200 59 5750 624 PC 68 1676953 7500 189861 2500 59 550 625 LIXO 69 1676955 1200 189861 2500 59 520 626 LIXO 70 1676955 3800 189864 3400 59 400 628 MURO 71 1676968 3300 189864 3400 59 400 628 MURO 72 1676974 5300 189865 6600 59 420 628 GRADE 73 1676974 5300 189865 6600 59 420 628 GRADE 73 1676974 5300 189864 9700 59 370 630 CASA 74 1676964 8300 189847 7000 59 9.70 631 CASA 75 1676964 8300 189847 7000 59 9.70 631 CASA 76 1676957 2000 189838 3400 59 9.60 632 PM 77 1676964 1200 189839 9100 59 580 632 PM 78 1676954 1200 189839 9100 59 580 633 MURO 78 1676954 800 189847 2400 59 60 63 634 MURO 80 1676947 8300 189847 2400 59 620 637 MURO 81 1676946 8200 189843 72400 59 620 637 MURO 81 1676946 800 189843 9300 59 960 638 CASA 83 1676944 8000 189843 72400 59 620 637 MURO 84 1676946 8000 189843 9300 59 960 638 CASA 83 1676944 8000 189843 9300 59 960 638 CASA 84 1676944 8000 189843 9300 59 960 638 CASA 85 1676944 5700 189838 7800 59 050 639 CASA 86 1676944 5000 189863 7800 59 670 640 MURO 86 1676944 5000 189863 7800 59 670 640 MURO 87 1676944 5000 189863 7800 59 500 642 MURO 88 1676944 5000 189865 2000 59 500 642 MURO 88 1676944 5000 189865 2000 59 9.60 644 MURO 88 1676944 5000 189865 2000 59 9.60 644 MURO 89 1676944 5000 189865 2000 59 9.60 646 MURO 80 1676944 5000 189865 2000 59 9.60 646 MURO 80 1676944 5000 189865 2000 59 9.60 646 MURO 81 1676945 2000 189865 2000 59 9.60 646 MURO 82 1676945 2000 189865 2000 59 9.60 646 MURO 83 1676945 2000 189865 2000 59 9.60 646 MURO 84 167697 2000 189864 2000 59 9.60 646 MURO 85 1676945 2000 189865 2000 59 9.60 646 MURO 86 167697 2000 189865 2000 59 9.60 647 MURO 87 1676937 0000 189865 2000 59 9.60 647 MURO 88 167693 2000 189865 2000 59 9.60 648 MURO 90 167693 2000 189865 2000 59 9.60 649 CASA 91 1676937 2000 189865 2000 59 9.60 649 CASA 92 1676937 2000 189865 2000 59 9.60 647 MURO 91 1676937 2000 189865 2000 59 9.00 PL148 PA143 98 167697 2000 189865 2000 59 9.00 PL148 PA143 99 1676985 2000 198865 2000 59 9.00 PL148 PA143 99 1676985 2000 198865 2000 59 9.00 PL148					
68					
69					
70					
71					
72 1676974.5300 189856.9600 59.420 629 GRADE 73 1676970.9400 189844.7000 59.370 630 CASA 74 1676964.8300 189844.7000 59.470 631 CASA 75 1676964.9900 189838.3400 59.580 632 PM 76 1676957.2000 189838.3400 59.740 633 CASA 77 1676954.1200 189839.5100 59.580 634 MURO 78 1676954.1200 189839.5000 59.110 635 MURO 79 1676947.7900 189847.2400 59.620 637 MURO 80 1676947.8300 189847.2400 59.620 637 MURO 81 1676944.8300 189839.7800 59.050 639 CASA 82 1676950.4200 189839.7800 59.050 639 CASA 83 1676944.8600 189867.2000 59.500 640 MURO 84 1676934.5700 189867.2000 59.520 642 MURO 85 1676944.5700 189867.2000 59.810 <					
73 1676970.9400 189844.7900 59.370 630 CASA 74 1676964.8300 189844.7000 59.470 631 CASA 75 1676964.9900 189849.1300 59.580 632 PM 76 1676967.2000 189839.5100 59.580 634 MURO 77 1676964.7900 189839.5100 59.580 634 MURO 78 1676947.7900 189847.0800 59.070 636 MURO 80 1676947.8300 189847.2400 59.620 637 MURO 81 1676947.8300 189847.3500 59.070 636 MURO 81 1676946.6200 189839.7800 59.050 639 CASA 82 1676950.4200 189837.2000 59.670 640 MURO 84 1676944.8000 189852.3000 59.670 640 MURO 85 1676944.5000 189857.2000 59.520 642 MURO 86 1676944.2900 189861.5900 59.610 643 MURO 87 1676845.2900 189862.200 59.760 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
74 1876964 8300 189849 1300 59.470 631 CASA 75 1876964 9900 189849 1300 59.580 632 PM 76 1676957 2000 189838 3400 59.740 633 CASA 77 1676954 1200 189839 5100 59.580 634 MURO 78 1676953 8500 189839 5000 59.110 635 MURO 79 1676947 7300 189847 0800 59.070 636 MURO 80 1876947 8300 189847 2400 59.620 637 MURO 81 1676946 6200 189843 9800 59.050 638 CASA 82 1676946 6200 189853 7800 59.050 638 CASA 83 1676944 8600 189852 3000 59.610 641 MURO 84 1676934 6500 189854 79800 59.610 641 MURO 85 1676944 5700 189867 5900 59.610 643 MURO 86 1676943 5200 189862 500 59.810 644 CE 87 1676943 5200 189862 500 59.800 6					
75 1676964 9900 189849 1300 59.80 632 PM 76 1676957.2000 189838.3400 59.740 633 CASA 77 1676954.1200 189839.5100 59.580 634 MURO 78 1676953.8500 189837.000 59.110 635 MURO 79 1676947.7900 189847.000 59.070 636 MURO 80 1676947.3300 189847.2400 59.620 637 MURO 81 1676946.6200 189843.500 58.990 638 CASA 82 1676944.8000 189852.3000 59.670 640 MURO 84 1676944.8000 189852.3000 59.670 640 MURO 85 1676944.8000 189857.2000 59.670 640 MURO 85 1676944.2900 189857.2000 59.520 642 MURO 86 1676945.2900 189861.5900 59.610 641 MURO 87 1676945.2900 189862.5000 59.760 645 MURO 88 1676945.2600 189872.600 59.960 646					
76 1676957.2000 189838.3400 59.740 633 CASA 77 1676954.1200 189839.5100 59.580 634 MURO 78 1676953.8500 189839.5000 59.110 635 MURO 79 1676947.7900 189847.0800 59.070 636 MURO 80 1676947.8300 189847.2400 59.620 637 MURO 81 1676946.6200 189839.7800 59.050 638 CASA 82 1676950.4200 189839.7800 59.050 639 CASA 83 1676944.8600 189852.3000 59.670 640 MURO 84 1676939.6600 189857.2000 59.610 641 MURO 85 1676944.5700 189867.2000 59.610 641 MURO 86 1676944.2900 189862.5000 59.610 643 MURO 87 1676945.2900 189862.5000 59.810 644 CE 88 1676934.5000 189867.2800 59.810 644 MURO 90 1676934.5000 189867.2800 59.800 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
77 1676954,1200 189839,5100 59,580 634 MURO 78 1676953,3500 189839,5000 59,110 635 MURO 79 1676947,7900 189847,2800 59,070 636 MURO 80 1676947,8300 189847,2400 59,620 637 MURO 81 1676946,6200 189839,7800 59,050 638 CASA 82 1676954,4200 189832,3000 59,670 640 MURO 84 1676934,8600 189852,3000 59,670 640 MURO 84 1676934,6700 189857,2000 59,520 642 MURO 85 1676944,5700 189857,2000 59,520 642 MURO 86 1676945,2900 189861,5900 59,610 641 MURO 87 1676945,2900 189862,5000 59,810 644 CE 88 1676934,5200 189872,6200 59,760 645 MURO 89 1676934,5200 189867,370 59,750 647 MURO 91 1676934,0500 189858,800 59,380					
78 1676953.4500 189839.5000 59.110 635 MURO 79 1676947.7900 189847.0800 59.070 636 MURO 80 1676947.8300 189847.2400 59.620 637 MURO 81 1676946.6200 189843.7800 59.950 638 CASA 82 1676948.600 189852.3000 59.505 639 CASA 83 1676944.8600 189852.3000 59.670 640 MURO 84 1676939.6600 189847.9800 59.610 641 MURO 85 1676944.5700 189857.2000 59.520 642 MURO 86 1676942.900 189861.5900 59.610 643 MURO 87 1676943.6200 1898672.6200 59.810 644 CE 88 1676943.6200 1898672.800 59.800 646 MURO 89 1676936.5500 1898672.800 59.800 646 MURO 90 1676934.5000 189863.370 59.750 647 MURO 91 1676937.5000 189863.200 59.800 6					
T99					
80 1676947.8300 189847.2400 59.620 637 MURO 81 1676946.6200 189843.7800 59.950 638 CASA 82 1676950.4200 189839.7800 59.050 639 CASA 83 1676944.8600 189852.3000 59.670 640 MURO 84 1676934.5700 189867.2000 59.520 642 MURO 85 1676944.5700 189861.5900 59.610 641 MURO 86 1676944.2900 189861.5900 59.610 643 MURO 87 1676945.2900 189862.5000 59.760 645 MURO 89 1676936.5500 189867.2800 59.760 645 MURO 90 1676934.0500 189864.3700 59.750 647 MURO 91 1676937.0000 189865.8600 59.370 648 CASA 92 1676970.2300 189841.4600 59.330 649 CASA 93 1676974.7100 189845.9800 59.980 650 CASA 94 1676976.2600 189840.9400 59.110					
81 1676946.6200 189844.3500 58.990 638 CASA 82 1676954.200 189839.7800 59.050 639 CASA 83 1676944.8600 189852.3000 59.670 640 MURO 84 1676934.6600 189857.2000 59.610 641 MURO 85 1676944.5700 189857.2000 59.520 642 MURO 86 1676944.2900 189861.5900 59.610 643 MURO 87 1676945.2900 189862.5000 59.810 644 CE 88 1676943.6200 189872.6200 59.760 645 MURO 89 1676934.5000 189867.2800 59.800 646 MURO 90 1676934.0500 189867.2800 59.800 646 MURO 91 1676933.2400 189886.3400 59.370 647 MURO 91 1676933.2400 189884.2200 59.280 650 CASA 92 1676974.7100 189845.2200 59.280 650 CASA 93 1676974.8700 189840.3400 59.10					
82 1676950.4200 189839.7800 59.050 639 CASA 83 1676944.8600 189852.3000 59.670 640 MURO 84 1676939.6600 189847.9800 59.610 641 MURO 85 1676944.5700 189857.2000 59.520 642 MURO 86 1676944.2900 189861.5900 59.610 643 MURO 87 1676945.2900 189862.5000 59.810 644 CE 88 1676943.6200 189867.2000 59.760 645 MURO 89 1676935.5500 189864.3700 59.760 645 MURO 90 1676934.0500 189864.3700 59.750 647 MURO 91 1676937.0000 189865.8600 59.380 649 CASA 92 167697.7100 189845.2200 59.280 650 CASA 94 1676972.300 189845.2200 59.280 650 CASA 94 1676971.8700 189840.3400 59.190 652 MURO 95 1676944.6000 189850.9800 59.420					
83 1676944.8600 189852.3000 59.670 640 MURO 84 1676939.6600 189847.9800 59.610 641 MURO 85 1676944.5700 189857.2000 59.520 642 MURO 86 1676944.2900 189861.5900 59.610 643 MURO 87 1676945.2000 189862.5000 59.810 644 CE 88 1676945.2000 189872.6200 59.760 645 MURO 89 1676934.5500 189867.2800 59.800 646 MURO 90 167693.40500 189864.3700 59.750 647 MURO 91 1676933.2400 189860.4400 59.370 648 CASA 92 1676937.0000 189855.8600 59.380 649 CASA 93 1676974.7100 189845.2200 59.280 650 CASA 94 1676970.2300 189841.4600 59.190 652 MURO 95 1676971.8700 189840.3400 59.110 PL142 PM 97 1676971.8700 189840.3400 59.110 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
84 1676934.600 189847.9800 59.610 641 MURO 85 1676944.5700 189857.2000 59.520 642 MURO 86 1676944.2900 189861.5900 59.610 643 MURO 87 1676945.2900 189862.5000 59.810 644 CE 88 1676936.5500 189867.2800 59.800 646 MURO 89 1676936.5500 189864.3700 59.750 647 MURO 90 1676934.0500 189864.3700 59.750 647 MURO 91 1676937.0000 189865.8600 59.370 648 CASA 92 1676937.0000 189855.8600 59.380 649 CASA 93 1676974.7100 189845.2200 59.280 650 CASA 94 1676970.2300 189841.6600 59.190 652 MURO 95 1676964.4600 189840.3400 59.110 PL142 PM 97 1676972.6900 189841.5300 59.090 PL143 PA143 98 1676978.2900 189836.4500 58.890					
85 1676944.5700 189857.2000 59.520 642 MURO 86 1676944.2900 189861.5900 59.610 643 MURO 87 1676945.2900 189862.5000 59.810 644 CE 88 1676945.2900 189872.6200 59.760 645 MURO 89 1676936.5500 189867.2800 59.800 646 MURO 90 1676934.0500 189860.4400 59.370 648 CASA 91 1676937.0000 189865.8600 59.380 649 CASA 92 1676937.0000 189855.8600 59.380 649 CASA 93 1676974.7100 189845.2200 59.280 650 CASA 94 1676970.2300 189841.6600 59.190 652 MURO 95 1676964.4600 189850.9800 59.420 PL141 CE 96 1676971.8700 189840.3400 59.110 PL142 PM 97 1676972.6900 189834.15300 59.070 PL143 PA143 98 1676972.8000 189836.4500 58.890					
86 1676944.2900 189861.5900 59.610 643 MURO 87 1676945.2900 189862.5000 59.810 644 CE 88 1676943.6200 189872.6200 59.760 645 MURO 89 1676936.5500 189867.2800 59.800 646 MURO 90 1676933.40500 189864.3700 59.750 647 MURO 91 1676933.2000 189865.8600 59.380 649 CASA 92 1676937.0000 189855.8600 59.380 649 CASA 93 1676974.7100 189845.2200 59.280 650 CASA 94 1676970.2300 189841.4600 59.190 652 MURO 95 1676964.4600 189850.9800 59.100 PL141 CE 96 1676971.8700 189840.3400 59.110 PL142 PM 97 1676972.6900 189841.5300 59.090 PL143 PA143 98 1676978.2900 189834.500 59.900 PL144 CASA 99 1676982.0700 189835.7100 59.70					
87 1676945.2900 189862.5000 59.810 644 CE 88 1676943.6200 189872.6200 59.760 645 MURO 89 1676934.0500 189867.2800 59.800 646 MURO 90 1676934.0500 189860.4400 59.370 648 CASA 91 1676937.0000 189855.8600 59.380 649 CASA 92 1676937.0000 189845.2200 59.280 650 CASA 93 1676974.7100 189845.2200 59.280 650 CASA 94 1676976.2300 189841.4600 59.190 652 MURO 95 1676964.4600 189850.9800 59.420 PL141 CE 96 1676971.8700 189840.3400 59.110 PL142 PM 97 1676972.6900 189840.9700 59.070 PL143 PA143 98 1676978.2900 189836.4500 58.890 PL145 CASA 100 1676982.0700 189837.300 59.070 PL144 CASA 101 1676973.8800 189837.700 59.090					
88 1676943.6200 189872.6200 59.760 645 MURO 89 1676936.5500 189867.2800 59.800 646 MURO 90 1676934.0500 189864.3700 59.750 647 MURO 91 1676933.2400 189860.4400 59.370 648 CASA 92 1676937.0000 189855.8600 59.380 649 CASA 93 1676974.7100 189845.2200 59.280 650 CASA 94 1676972.3300 189841.4600 59.190 652 MURO 95 1676964.4600 189850.9800 59.420 PL141 CE 96 1676971.8700 189840.3400 59.110 PL142 PM 97 1676972.6900 189840.300 59.070 PL143 PA143 98 1676978.2900 189840.9700 59.070 PL144 CASA 99 1676976.0000 189837.3500 59.080 PL146 CASA 101 1676972.4300 189837.7900 59.090 PL148 MURO 103 1676988.9200 189827.200 59.050					
89 1676936.5500 189867.2800 59.800 646 MURO 90 1676934.0500 189864.3700 59.750 647 MURO 91 1676933.2400 189865.4400 59.370 648 CASA 92 1676937.0000 189855.8600 59.380 649 CASA 93 1676974.7100 189845.2200 59.280 650 CASA 94 1676970.2300 189841.4600 59.190 652 MURO 95 1676964.4600 189850.9800 59.420 PL141 CE 96 1676971.8700 189840.3400 59.110 PL142 PM 97 1676972.6900 189841.5300 59.090 PL143 PA143 98 1676978.2900 189840.9700 59.070 PL144 CASA 99 1676982.0700 189831.3500 59.080 PL145 CASA 100 1676972.4300 189837.900 59.170 PL147 CASA 102 1676973.8800 189832.1200 59.050 PL149 CASA 103 1676984.9200 189823.3400 59.050<					
90					
91					
92					
93					
94 1676970.2300 189841.4600 59.190 652 MURO 95 1676964.4600 189850.9800 59.420 PL141 CE 96 1676971.8700 189840.3400 59.110 PL142 PM 97 1676972.6900 189841.5300 59.090 PL143 PA143 98 1676978.2900 189840.9700 59.070 PL144 CASA 99 1676982.0700 189836.4500 58.890 PL145 CASA 100 1676976.0000 189831.3500 59.080 PL146 CASA 101 1676972.4300 189835.7100 59.170 PL147 CASA 102 1676973.8800 189837.9900 59.090 PL148 MURO 103 1676988.9200 189823.400 59.050 PL149 CASA 104 1676988.9200 189823.3400 59.050 PL150 CASA 105 1676992.1200 189827.1200 59.020 PL151 CASA 106 1676997.7900 189823.6800 59.000 PL153 CASA 107 1676988.7000 189823.7300					
95 1676964.4600 189850.9800 59.420 PL141 CE 96 1676971.8700 189840.3400 59.110 PL142 PM 97 1676972.6900 189841.5300 59.090 PL143 PA143 98 1676978.2900 189840.9700 59.070 PL144 CASA 99 1676982.0700 189836.4500 58.890 PL145 CASA 100 1676976.0000 189831.3500 59.080 PL146 CASA 101 1676972.4300 189835.7100 59.170 PL147 CASA 102 1676973.8800 189837.0900 59.090 PL148 MURO 103 1676988.9200 189822.1200 59.050 PL149 CASA 104 1676989.4800 189823.3400 59.050 PL150 CASA 105 1676997.7900 189827.1200 59.020 PL151 CASA 106 1676979.7900 189823.6800 59.000 PL153 CASA 107 1676988.7000 189824.0700 59.080 PL155 DIV 109 1676995.3900 189844.2800					
96 1676971.8700 189840.3400 59.110 PL142 PM 97 1676972.6900 189841.5300 59.090 PL143 PA143 98 1676978.2900 189840.9700 59.070 PL144 CASA 99 1676982.0700 189836.4500 58.890 PL145 CASA 100 1676976.0000 189831.3500 59.080 PL146 CASA 101 1676972.4300 189835.7100 59.170 PL147 CASA 102 1676973.8800 189837.0900 59.090 PL148 MURO 103 1676988.9200 189832.1200 59.050 PL149 CASA 104 1676988.9200 189823.3400 59.050 PL150 CASA 105 1676989.4800 189823.3400 59.050 PL151 CASA 105 1676992.1200 189827.1200 59.020 PL151 CASA 106 1676997.900 189823.6800 59.000 PL153 CASA 107 1676983.2500 189823.6800 59.000 PL153 CASA 108 1676998.7000 189823.7300 <td>95</td> <td></td> <td></td> <td></td> <td></td>	95				
97 1676972.6900 189841.5300 59.090 PL143 PA143 98 1676978.2900 189840.9700 59.070 PL144 CASA 99 1676982.0700 189836.4500 58.890 PL145 CASA 100 1676976.0000 189831.3500 59.080 PL146 CASA 101 1676972.4300 189835.7100 59.170 PL147 CASA 102 1676973.8800 189837.0900 59.090 PL148 MURO 103 1676988.9200 189832.1200 59.050 PL149 CASA 104 1676989.4800 189828.3400 59.050 PL150 CASA 105 1676992.1200 189827.1200 59.020 PL151 CASA 106 1676979.7900 189823.6800 59.020 PL153 CASA 107 1676983.2500 189823.6800 59.000 PL153 CASA 108 1676985.3900 189824.0700 59.080 PL154 DIV 109 1676995.3900 189824.0700 59.080 PL155 DIV 110 1677005.3600 189844.2800 </td <td>96</td> <td></td> <td>189840.3400</td> <td>59.110</td> <td>PL142 PM</td>	96		189840.3400	59.110	PL142 PM
98 1676978.2900 189840.9700 59.070 PL144 CASA 99 1676982.0700 189836.4500 58.890 PL145 CASA 100 1676976.0000 189831.3500 59.080 PL146 CASA 101 1676972.4300 189835.7100 59.170 PL147 CASA 102 1676973.8800 189837.0900 59.090 PL148 MURO 103 1676988.9200 189832.1200 59.050 PL149 CASA 104 1676989.4800 189828.3400 59.050 PL150 CASA 105 1676992.1200 189827.1200 59.020 PL151 CASA 106 1676979.7900 189823.6800 59.020 PL152 CASA 107 1676983.2500 189823.6800 59.000 PL153 CASA 108 1676995.3900 189824.0700 59.080 PL154 DIV 109 1676995.3900 189874.7000 60.280 PL155 DIV 110 1677001.5500 189874.7000 60.280 PL157 DIV 112 1677006.0200 189847.9500 <td>97</td> <td></td> <td></td> <td></td> <td>PL143 PA143</td>	97				PL143 PA143
99 1676982.0700 189836.4500 58.890 PL145 CASA 100 1676976.0000 189831.3500 59.080 PL146 CASA 101 1676972.4300 189835.7100 59.170 PL147 CASA 102 1676973.8800 189837.0900 59.090 PL148 MURO 103 1676988.9200 189832.1200 59.050 PL149 CASA 104 1676989.4800 189828.3400 59.050 PL150 CASA 105 1676992.1200 189827.1200 59.020 PL151 CASA 106 1676979.7900 189822.3300 59.110 PL152 CASA 107 1676983.2500 189823.6800 59.000 PL153 CASA 108 1676995.3900 189823.7300 59.020 PL154 DIV 109 1676995.3900 189824.0700 59.080 PL155 DIV 110 1677001.5500 189874.7000 60.280 PL156 C*PLUVIA 111 1677006.0200 189844.2800 59.970 PL157 DIV 112 1677006.0200 189847.95	98	1676978.2900	189840.9700	59.070	PL144 CASA
100 1676976.0000 189831.3500 59.080 PL146 CASA 101 1676972.4300 189835.7100 59.170 PL147 CASA 102 1676973.8800 189837.0900 59.090 PL148 MURO 103 1676988.9200 189832.1200 59.050 PL149 CASA 104 1676989.4800 189828.3400 59.050 PL150 CASA 105 1676992.1200 189827.1200 59.020 PL151 CASA 106 1676979.7900 189822.3300 59.110 PL152 CASA 107 1676983.2500 189823.6800 59.000 PL153 CASA 108 1676987.000 189823.7300 59.020 PL154 DIV 109 1676995.3900 189824.0700 59.080 PL155 DIV 110 1677001.5500 189874.7000 60.280 PL156 C*PLUVIA 111 1677006.0200 189844.2800 59.970 PL157 DIV 112 1677006.0200 189846.3000 59.770 PL159 PAV 114 1677005.2400 189847.950	99	1676982.0700	189836.4500	58.890	PL145 CASA
102 1676973.8800 189837.0900 59.090 PL148 MURO 103 1676988.9200 189832.1200 59.050 PL149 CASA 104 1676989.4800 189828.3400 59.050 PL150 CASA 105 1676992.1200 189827.1200 59.020 PL151 CASA 106 1676979.7900 189822.3300 59.110 PL152 CASA 107 1676983.2500 189823.6800 59.000 PL153 CASA 108 1676988.7000 189823.7300 59.020 PL154 DIV 109 1676995.3900 189824.0700 59.080 PL155 DIV 110 1677001.5500 189874.7000 60.280 PL156 C*PLUVIA 111 1677003.5800 189844.2800 59.970 PL157 DIV 112 1677006.0200 189847.9500 60.010 PL158 PM 113 1677005.2400 189846.3000 59.770 PL159 PAV 114 1677005.9600 189837.4300 59.870 PL161 CASA 116 1677006.9100 189832.2400	100	1676976.0000	189831.3500	59.080	PL146 CASA
103 1676988.9200 189832.1200 59.050 PL149 CASA 104 1676989.4800 189828.3400 59.050 PL150 CASA 105 1676992.1200 189827.1200 59.020 PL151 CASA 106 1676979.7900 189822.3300 59.110 PL152 CASA 107 1676983.2500 189823.6800 59.000 PL153 CASA 108 1676988.7000 189823.7300 59.020 PL154 DIV 109 1676995.3900 189824.0700 59.080 PL155 DIV 110 1677001.5500 189874.7000 60.280 PL156 C*PLUVIA 111 1677003.5800 189844.2800 59.970 PL157 DIV 112 1677006.0200 189847.9500 60.010 PL158 PM 113 1677006.7100 189846.3000 59.770 PL159 PAV 114 1677005.2400 189841.1100 60.010 PL160 CASA 115 1677005.9600 189837.4300 59.870 PL161 CASA 116 1677006.9100 189832.2400	101	1676972.4300	189835.7100	59.170	PL147 CASA
104 1676989.4800 189828.3400 59.050 PL150 CASA 105 1676992.1200 189827.1200 59.020 PL151 CASA 106 1676979.7900 189822.3300 59.110 PL152 CASA 107 1676983.2500 189823.6800 59.000 PL153 CASA 108 1676988.7000 189823.7300 59.020 PL154 DIV 109 1676995.3900 189824.0700 59.080 PL155 DIV 110 1677001.5500 189874.7000 60.280 PL156 C*PLUVIA 111 1677003.5800 189844.2800 59.970 PL157 DIV 112 1677006.0200 189847.9500 60.010 PL158 PM 113 1677006.7100 189846.3000 59.770 PL159 PAV 114 1677005.2400 189841.1100 60.010 PL160 CASA 115 1677005.9600 189837.4300 59.870 PL161 CASA 116 1677006.9100 189832.2400 59.880 PL162 CASA 117 1677007.7100 189827.6800	102	1676973.8800	189837.0900	59.090	PL148 MURO
105 1676992.1200 189827.1200 59.020 PL151 CASA 106 1676979.7900 189822.3300 59.110 PL152 CASA 107 1676983.2500 189823.6800 59.000 PL153 CASA 108 1676988.7000 189823.7300 59.020 PL154 DIV 109 1676995.3900 189824.0700 59.080 PL155 DIV 110 1677001.5500 189874.7000 60.280 PL156 C*PLUVIA 111 1677003.5800 189844.2800 59.970 PL157 DIV 112 1677006.0200 189847.9500 60.010 PL158 PM 113 1677006.7100 189846.3000 59.770 PL159 PAV 114 1677005.2400 189841.1100 60.010 PL160 CASA 115 1677005.9600 189837.4300 59.870 PL161 CASA 116 1677006.9100 189832.2400 59.880 PL162 CASA 117 1677007.7100 189827.6800 59.610 PL163 CASA	103	1676988.9200	189832.1200	59.050	PL149 CASA
106 1676979.7900 189822.3300 59.110 PL152 CASA 107 1676983.2500 189823.6800 59.000 PL153 CASA 108 1676988.7000 189823.7300 59.020 PL154 DIV 109 1676995.3900 189824.0700 59.080 PL155 DIV 110 1677001.5500 189874.7000 60.280 PL156 C*PLUVIA 111 1677003.5800 189844.2800 59.970 PL157 DIV 112 1677006.0200 189847.9500 60.010 PL158 PM 113 1677006.7100 189846.3000 59.770 PL159 PAV 114 1677005.2400 189841.1100 60.010 PL160 CASA 115 1677005.9600 189837.4300 59.870 PL161 CASA 116 1677006.9100 189832.2400 59.880 PL162 CASA 117 1677007.7100 189827.6800 59.610 PL163 CASA		1676989.4800			
107 1676983.2500 189823.6800 59.000 PL153 CASA 108 1676988.7000 189823.7300 59.020 PL154 DIV 109 1676995.3900 189824.0700 59.080 PL155 DIV 110 1677001.5500 189874.7000 60.280 PL156 C*PLUVIA 111 1677003.5800 189844.2800 59.970 PL157 DIV 112 1677006.0200 189847.9500 60.010 PL158 PM 113 1677006.7100 189846.3000 59.770 PL159 PAV 114 1677005.2400 189841.1100 60.010 PL160 CASA 115 1677005.9600 189837.4300 59.870 PL161 CASA 116 1677006.9100 189832.2400 59.880 PL162 CASA 117 1677007.7100 189827.6800 59.610 PL163 CASA					
108 1676988.7000 189823.7300 59.020 PL154 DIV 109 1676995.3900 189824.0700 59.080 PL155 DIV 110 1677001.5500 189874.7000 60.280 PL156 C*PLUVIA 111 1677003.5800 189844.2800 59.970 PL157 DIV 112 1677006.0200 189847.9500 60.010 PL158 PM 113 1677006.7100 189846.3000 59.770 PL159 PAV 114 1677005.2400 189841.1100 60.010 PL160 CASA 115 1677005.9600 189837.4300 59.870 PL161 CASA 116 1677006.9100 189832.2400 59.880 PL162 CASA 117 1677007.7100 189827.6800 59.610 PL163 CASA					
109 1676995.3900 189824.0700 59.080 PL155 DIV 110 1677001.5500 189874.7000 60.280 PL156 C*PLUVIA 111 1677003.5800 189844.2800 59.970 PL157 DIV 112 1677006.0200 189847.9500 60.010 PL158 PM 113 1677006.7100 189846.3000 59.770 PL159 PAV 114 1677005.2400 189841.1100 60.010 PL160 CASA 115 1677005.9600 189837.4300 59.870 PL161 CASA 116 1677006.9100 189832.2400 59.880 PL162 CASA 117 1677007.7100 189827.6800 59.610 PL163 CASA					
110 1677001.5500 189874.7000 60.280 PL156 C*PLUVIA 111 1677003.5800 189844.2800 59.970 PL157 DIV 112 1677006.0200 189847.9500 60.010 PL158 PM 113 1677006.7100 189846.3000 59.770 PL159 PAV 114 1677005.2400 189841.1100 60.010 PL160 CASA 115 1677005.9600 189837.4300 59.870 PL161 CASA 116 1677006.9100 189832.2400 59.880 PL162 CASA 117 1677007.7100 189827.6800 59.610 PL163 CASA					
111 1677003.5800 189844.2800 59.970 PL157 DIV 112 1677006.0200 189847.9500 60.010 PL158 PM 113 1677006.7100 189846.3000 59.770 PL159 PAV 114 1677005.2400 189841.1100 60.010 PL160 CASA 115 1677005.9600 189837.4300 59.870 PL161 CASA 116 1677006.9100 189832.2400 59.880 PL162 CASA 117 1677007.7100 189827.6800 59.610 PL163 CASA					
112 1677006.0200 189847.9500 60.010 PL158 PM 113 1677006.7100 189846.3000 59.770 PL159 PAV 114 1677005.2400 189841.1100 60.010 PL160 CASA 115 1677005.9600 189837.4300 59.870 PL161 CASA 116 1677006.9100 189832.2400 59.880 PL162 CASA 117 1677007.7100 189827.6800 59.610 PL163 CASA					
113 1677006.7100 189846.3000 59.770 PL159 PAV 114 1677005.2400 189841.1100 60.010 PL160 CASA 115 1677005.9600 189837.4300 59.870 PL161 CASA 116 1677006.9100 189832.2400 59.880 PL162 CASA 117 1677007.7100 189827.6800 59.610 PL163 CASA					
114 1677005.2400 189841.1100 60.010 PL160 CASA 115 1677005.9600 189837.4300 59.870 PL161 CASA 116 1677006.9100 189832.2400 59.880 PL162 CASA 117 1677007.7100 189827.6800 59.610 PL163 CASA					
115 1677005.9600 189837.4300 59.870 PL161 CASA 116 1677006.9100 189832.2400 59.880 PL162 CASA 117 1677007.7100 189827.6800 59.610 PL163 CASA					
116 1677006.9100 189832.2400 59.880 PL162 CASA 117 1677007.7100 189827.6800 59.610 PL163 CASA					
117 1677007.7100 189827.6800 59.610 PL163 CASA					
1181677010.1000 189824.9600 59.570 PL164 PAV					
	118	1677010.1000	189824.9600	59.570	PL164 PAV

Cademetas-Acesso23 cadastro

LEVANTAMENTO CADASTRAL

ACL ASSESSORIA & CONSULTORIA LTDA.

Projeto: Acesso ao Núcleo 23 - Loteamento Rubem Berta

Trecho: a partir da Rua Domênico Feoli (antiga Rua C) até 70m além.

Base Altimétrica

RN 062 - Cota: 43,712m

Local: Av. Baltazar de Oliveira Garcia, 3868

fonte: SPM

Base Planimétrica

Rede de Referência Planimétrica SPM Pinos 2987.2C 214 e 215 Datum: Carta Geral

•••	1			
N°.	Ordenadas	Abscissas	Cota (m)	Descrição
119	1677012.4000	189810.8300	59.320	PL165 BL
120	1677011.6600	189810.8100	59.590	PL166 C*PLUVIA
120	1077011.0000	109010.0100	59.590	PL 100 C PLUVIA
121	1677012.4800	189808.1700	59.530	PL167 PM
122	1677001.6750	189900.3640	60.120	PL556 0+000
			i e	

Cadermetas-Acesso23 cadastro

NIVELAMENTO
Projeto: Acesso ao Núcleo 23 - Loteam. Rubem Berta
Trecho: a partir da Rua Domênico Feoli até 70m além.

PERIODO: 04/02

	ACL ASSESSORIA 8	& CONSULTORIA L	TDA.	Trecho: a pa	rtir da Rua Domênico F			
ESTACAS		,	VISADAS	T	ALTURA INSTRUMENTO	COTAS	OBSERVAÇÕES	
INTEIRAS	INTERMED.	RÉ	INTERM.	VANTE	INSTRUMENTO			
		TDANG	PORTE DE	COTAS				
RN 62		1.491	SFORTE DE	COIAS	45.203	43.712	BALTAZAR DE OLIVEIRA	
				227	12.22	44.976	GARCIA, Nº 386	
		2.188			47.164	44.976	,	
				2.204		44.960		
		128			45.088	44.960		
				3.852		41.236		
		378		2.044	41.614	41.236		
		68		3.811	37.871	37.803 37.803		
		00		2.589	37.071	35.282		
		1.480		2.000	36.762	35.282		
				709	5552	36.053		
		2.532			38.585	36.053		
PINO 215 (5	548)		1.681			36.904		
				467		38.118		
		3.737			41.855	38.118		
		0.055		13	45.700	41.842		
DA/EEO\		3.957	810		45.799	41.842		
PA(559)			010	802		44.989 44.997		
		473		002	45.470	44.997		
		770		3.884	45.470	41.586		
		641		0.00	42.227	41.586		
PA (AUX)		-	1.131			41.096		
				2.540		39.687		
		433			40.120	39.687		
				3.280		36.840		
DNI		1.738		500	38.578	36.840	CARELA	
RN				586		37.992	CAPELA	
PA (AUX2)		3.177			44.273	41.096		
FA (AUAZ)		3.177		59	44.273	44.214		
		3.311		33	47.525	44.214		
				596		46.929		
		3.978			50.907	46.929		
RN			1.211			49.696	FARMÁCIA Nº 235	
PA			1.521			49.386		
				953		49.954		
D.4		3.497	0.054		53.451	49.954	DOMÉNICO FEOLI	
PA			3.351	175		50.100 53.276	DOMÊNICO FEOLI	
		3.403		175	56.679	53.276		
		0.700		341	50.078	56.338		
		3.832		0.1	60.170	56.338		
PA			539			59.631	DOMÊNICO FEOLI	
				296		59.874		
-		1.755			61.629	59.874		
RN				892		60.737	CASA 350 (DOMEN. FEOLI)	
		NIV/I	 ELAMENTO	FIXO				
		INIVI						
RN		1.048			61.785	60.737	CASA Nº 350	
0+000		, , ,	1.665			60.120		
	0+004,05		1.697			60.088	PAVIMENTO BORDO	
	0+004,15		1.565			60.220	MEIO FIO	
0+020			2.052			59.733		
0+040			2.308			59.477		
0.00-	0+059,88		2.259			59.526		
0+060			2.264			59.521		
0+070			2.114			59.671		
	İ							

Cademetas-Acesso23 nivelam

SEÇÕES TRANSVERSAIS Projeto: Acesso ao Núcleo 23 - Loteam. Rubem Berta Trecho: a partir da Rua Domênico Feoli até 70m além.

PERIODO: 04/02

INTEIRAS INTERMED. RÉ INTERM. VANTE INSTRUMENTO 0+000 1.665 61.785 60.120 EIXO LD 10,00 1.570 60.215 20,00 1.580 60.205 LE 10,00 1.788 59.997 20,00 1.942 59.843 0+020 1.412 61.151 59.739 EIXO LD 2,20 1.459 59.692 4,70 1.228 59.923 GRA LE 4,10 1.601 59.550	
LD 10,00 1.570 60.215 20,00 1.580 60.205 LE 10,00 1.788 59.997 20,00 1.942 59.843 0+020 1.412 61.151 59.739 EIXO LD 2,20 1.459 59.692 4,70 1.228 59.923 GRA LE 4,10 1.601 59.550	
LD 10,00 1.570 60.215 20,00 1.580 60.205 LE 10,00 1.788 59.997 20,00 1.942 59.843 0+020 1.412 61.151 59.739 EIXO LD 2,20 1.459 59.692 4,70 1.228 59.923 GRA LE 4,10 1.601 59.550	
20,00 1.580 60.205 LE 10,00 1.788 59.997 20,00 1.942 59.843 0+020 1.412 61.151 59.739 EIXO LD 2,20 1.459 59.692 4,70 1.228 59.923 GRA LE 4,10 1.601 59.550	
LE 10,00 1.788 59.997 20,00 1.942 59.843 0+020 1.412 61.151 59.739 EIXO LD 2,20 1.459 59.692 4,70 1.228 59.923 GRA LE 4,10 1.601 59.550	
20,00 1.942 59.843 0+020 1.412 61.151 59.739 EIXO LD 2,20 1.459 59.692 4,70 1.228 59.923 GRA LE 4,10 1.601 59.550	
0+020	
LD 2,20 1.459 59.692 4,70 1.228 59.923 GRA	
LD 2,20 1.459 59.692 4,70 1.228 59.923 GRA	
4,70 1.228 59.923 GRA LE 4,10 1.601 59.550	
LE 4,10 1.601 59.550	DE
LE 4,10 1.601 59.550	DE
7.50	
7,50 1.854 59.297	
0+040 1.585 61.062 59.477 EIXO	
LD 1,70 1.630 59.432	
4,40 1.583 59.479 GRA	DE
LE 3,50 1.675 59.387	
LE 3,50 1.675 59.387 5,20 1.678 59.384	
5,20 1.678 59.384 5,40 2.625 58.437	
7,50 2.613 58.449 PRÉI	DIO
7,00 2.010 30.440 111.	
0+060 1.449 60.970 59.521 EIXO)
LD 10,00 1.548 59.422	
20,00 1.728 59.242 BECO	0
30,00 1.912 59.058 BECO	
LE 10,00 1.445 59.525	
20,00 1.430 59.540 BEC	
30,00 1.668 59.302 BECO	0
0.070	
0+070 1.300 60.971 59.671 EIXO LD 10,00 1.432 59.539)
LD 10,00 1.432 59.539 19,10 1.242 59.729 PRÉI	DIO
19,10 1.242 59.729 FREI	DIO
LE 6,40 1.355 59.616 POR	TÃO
20,10	17.0

Cademetas-Acesso23 seções 22

2.3 - Projeto Planialtimétrico

O projeto Planialtimétrico foi concebido de acordo com as seguintes orientações:

- bases cartográficas com referências planialtimétricas, fornecidas pela Prefeitura;
- cadastro topográfico executado pela consultora, desde o cruzamento com a rua Domenico Feoli até o final da rua projetada;
- definições de traçados fornecidos pela Prefeitura, assim como seus limites;
- pontos de passagens obrigatórios e concordâncias com logradouros já implantados ou projetados;
- levantamento altimétrico, executado em toda área de influência da via, contemplando nivelamento e seccionamento, assim propiciando a elaboração de perfis naturais do terreno e seções transversais;
- projeto altimétrico, atendendo cotas mínimas definidas pelo projeto de drenagem.

Os desenhos do projeto, apresentados em continuação, apresentam a planta baixa cadastral com a definição e amarração do eixo locado, bem como o perfil longitudinal com o desenho do greide de pavimentação projetado. Em princípio, por razões econômicas, deverá ser mantido o calçamento com pedra irregular já existente no cruzamento com a rua Domenico Feoli.

Em síntese, os elementos do projeto geométrico estão assim definidos:

- estaca km 0+000: definida no eixo de cruzamento do Acesso ao Núcleo 23 com a rua Domenico Feoli (antiga Rua C, do Loteamento Rubem Berta), conforme indicado na planta de amarração;
- estaca km 0+072,84: ponto final (PF) definido no final do Acesso;
- extensão total do trecho projetado: 72,84m;
- extensão de calçamento existente na rua Domenico Feoli: 4,05m (semilargura da rua);

Destaca-se que o greide foi condicionado pela existência de calçamento no segmento anterior da via (semiplataforma da rua Domenico Feoli) e a soleira das casas e blocos ao longo do Acesso. Foi necessária a definição de uma única curva vertical, sendo o PIV projetado na estaca km 0+038,00.

O gabarito adotado para a seção transversal da rua, de acordo com as diretrizes da própria SMOV, foi o seguinte:

- largura total do logradouro: 9,00m
- largura da rua: 5,00m;
- largura do passeio: 2,00m;
- declividade transversal da rua: 2,5% (ambos os sentidos);

C:\SMOV\n2\siMemo Ac N23.doc 23

- declividade transversal do passeio: 2,0% (da testada para a rua);
- altura livre do meio fio: 0,15m;
- no trecho de alargamento (cul de sac), largura máxima: 26,00m (em frente passagem de pedestres 29).

Os desenhos do projeto apresentam em detalhe a Seção Tipo projetada.

2.4 - Cálculo de Volumes de Terraplenagem

O cálculo foi realizado a partir da gabaritagem das seções transversais dos cortes e aterros e da avaliação dos volumes envolvidos. Foi realizado com base nos subsídios fornecidos pelo projeto geométrico.

Sua determinação foi dada através das seguintes etapas:

- Análise do perfil longitudinal do projeto geométrico e das seções transversais do terreno natural;
- Desenho das seções gabaritadas;
- Cálculo dos volumes de cortes e aterros.

Os taludes de corte foram definidos com inclinação 1:1 (v:h) e os de aterros com declividade 1:1,5 (v:h).

2.4.1 - <u>Análise do Perfil Longitudinal do Projeto Geométrico e das Seções</u> Transversais do Terreno Natural

Nesta fase do trabalho se procedeu às estimativas particularizadas de volume em trechos específicos que, inclusive, serviram de apoio ao projeto do perfil longitudinal.

Foram analisadas em projeto as seções transversais levantadas, o perfil projetado e sua repercussão quanto às soleiras existentes, ajustando-se o greide conforme o caso.

2.4.2 - Desenho dos Gabaritos

A partir da definição do greide de projeto foram lançados os gabaritos nas seções transversais no terreno natural, conforme apresentado nos desenhos do projeto.

2.4.3 - Processo de Cálculo do Volumes

Uma vez desenhadas as seções transversais com o gabarito da via, procedeu-se a determinação das áreas e, posteriormente, dos volumes de cortes e aterros, levando-se em consideração o caixão da pavimentação dimensionada.

Assim, os volumes foram calculados através de planilhas especiais de cálculo que incluem:

C:\SMOV\n23\Memo Ac N23.doc

- a) estaqueamento;
- b) área das seções de corte (solo e rocha);
- c) área das seções de aterro;
- d) soma das áreas das seções de corte (solo e rocha);
- e) soma das áreas em aterro;
- f) semidistância entre as seções;
- g) volume dos cortes entre seções (+);
- h) volume dos aterros entre seções (-);
- i) volumes empolados entre seções;
- j) diferenças para compensação longitudinal;
- k) volumes excedentes (+/-).

A relação entre o volume dos cortes e dos aterros foi estabelecida como sendo de 1,30, incluindo-se neste coeficiente as perdas de material nas diversas operações a que serão submetidos.

O material dos cortes do subleito foi utilizado para aterro dos passeios e pista, desde que se enquadrassem nas especificações técnicas, e o excedente foi destinado a bota-fora.

Na página seguinte é apresentada a planilhas de cálculo de volumes de terraplenagem.

2.5 - Notas de Serviço de Pavimentação

Em sequência, é apresentada planilha contendo as notas de serviço de pavimentação.

2.6 - Documentário Fotográfico

Após as notas de serviço, apresenta-se um breve documentário fotográfico das condições atuais da rua (em abril/2002).

2.7 – Desenhos do Projeto Geométrico

Em continuação são apresentados os desenhos do projeto geométrico.

C:SMOVin23iMemo Ac N23.doc 25

CALCULO DE VOLUMES DE TERRAPLENAGEM

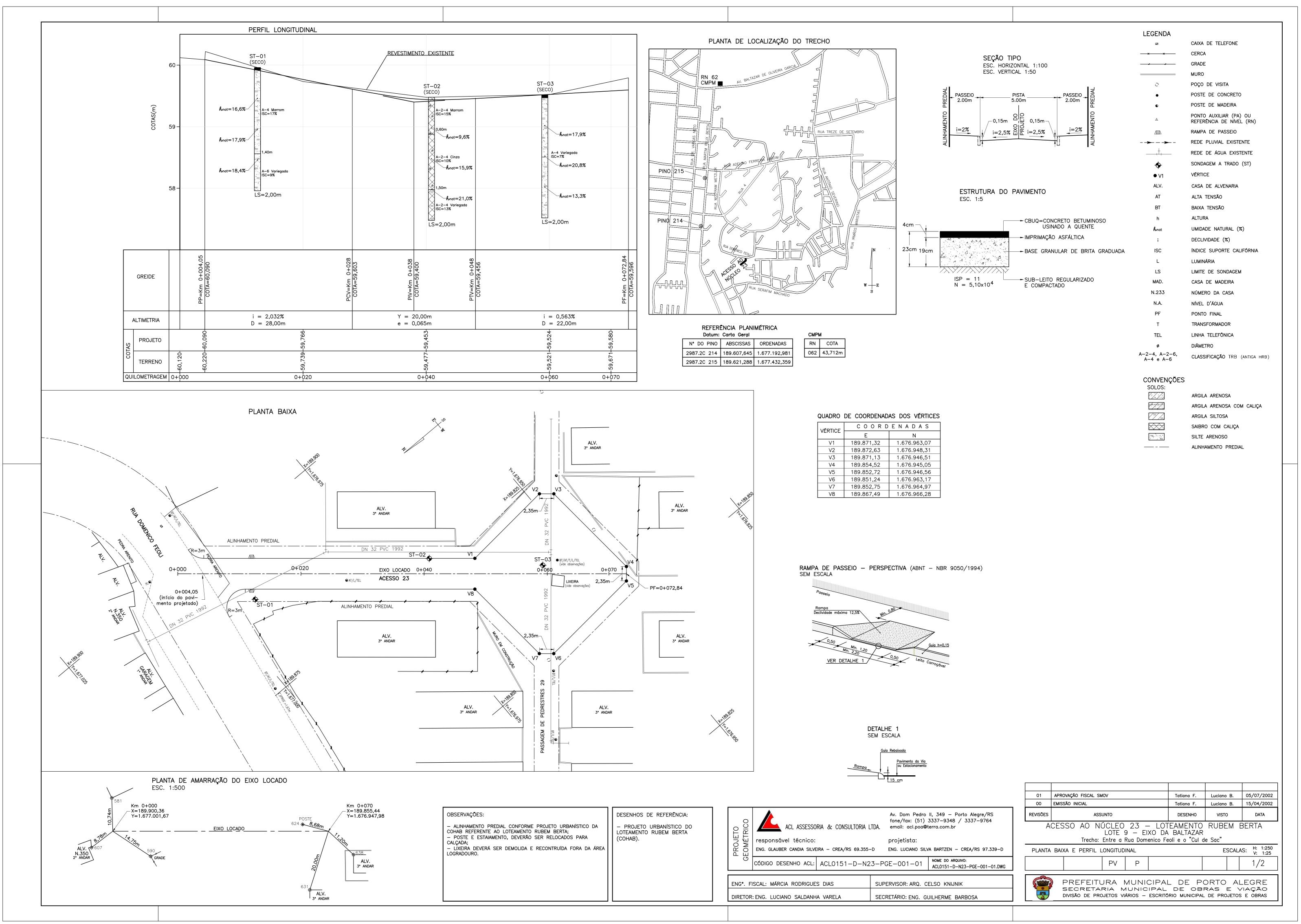
OBRA: ACESSO 23 - REGIÃO EIXO DA BALTAZAR

ESTACA	ÁREA DE SOLO	CORTE ROCHA	ÁREA DE ATERRO	S ÁREA D SOLO	E CORTE ROCHA	S ÁREA DE ATERRO	1 / 2 DISTÂNCIA	VOLUME I SOLO	DE CORTE ROCHA	VOLUME DE ATERRO	VOLUME EMPOLADO	DIFERENÇA VOLUME	VOLUME ACUMULADO
0+004,05 0+020,00 0+040,00 0+060,00 0+072,84	1,07 1,07 1,42 5,80 5,80	0,00 0,00 0,00 0,00 0,00	0,77 0,77 0,52 2,21 0,08	1,07 2,14 2,49 7,22 11,61	0,00 0,00 0,00 0,00 0,00	0,00 1,54 1,29 2,73 2,29	7,98 10,00 10,00 6,42	17 25 72 75	0 0 0 0	12 13 27 15	16 17 35 19	1 8 37 55	1 9 46 101
	TOTA	AL (m³)						189	0	67	87	101	

NOTA DE SERVIÇO DE PAVIMENTAÇÃO

ACESSO AO NÚCLEO 23 - LOTEAMENTO RUBEM BERTA

		SQUERDO	MEIO		SQUERDA		COTA	S EIXO		BORDA	DIREITA	MEIO	PASSEIO	DIREITO
ESTACA	COTA	DISTÂNCIA	FIO	COTA	DISTÂNCIA	i %	PROJETO	TERRENO	i %	DISTÂNCIA	COTA	FIO	DISTÂNCIA	COTA
		km 0+000.00 - EIXO DA RUA DOMÊNICO FEOLI												
		km 0+004.05 - FINAL PAVIMENTO RUA DOMÊNICO FEOLI = INÍCIO PAVIMENTO PROJETADO												
0+000,00				<u>-</u>	-			-	-					
0+004.05	50.004		50.054	50 504		0.500	60,090	60,220	0.500	0.50	50 50 4			50.00 4
0+020,00	59,894	2,00	59,854	59,704	2,50	-2,500	59,766	59,733	-2,500	2,50	59,704	59,854	2,00	59,894
0+040,00	59,581	2,00	59,541	59,391	2,50	-2,500	59,453	59,477	-2,500	2,50	59,391	59,541	2,00	59,581
	km 0+048.24 - INÍCIO DO "CUL DE SAC"													
0+048,24	59,586	2,00	59,546	59,396	2,50	-2,500	59,458		-2,500	2,50	59,396	59,546	2,00	59,586
0+060,00	59,652	2,00	59,612	59,462	13,00	-0,477	59,524	59,521	-0,477	13,00	59,462	59,612	2,00	59,652
0+070,00	59,708	2,00	59,668	59,518	4,00	-1,550	59,580	59,671	-1,550	4,00	59,518	59,668	2,00	59,708
0+072,84							59,596							
						km 0+07	2.84 - FINA	L DO "CUL [DE SAC"					


DOCUMENTÁRIO FOTOGRÁFICO ACESSO AO NÚCLEO 23 – LOTEAMENTO RUBEM BERTA

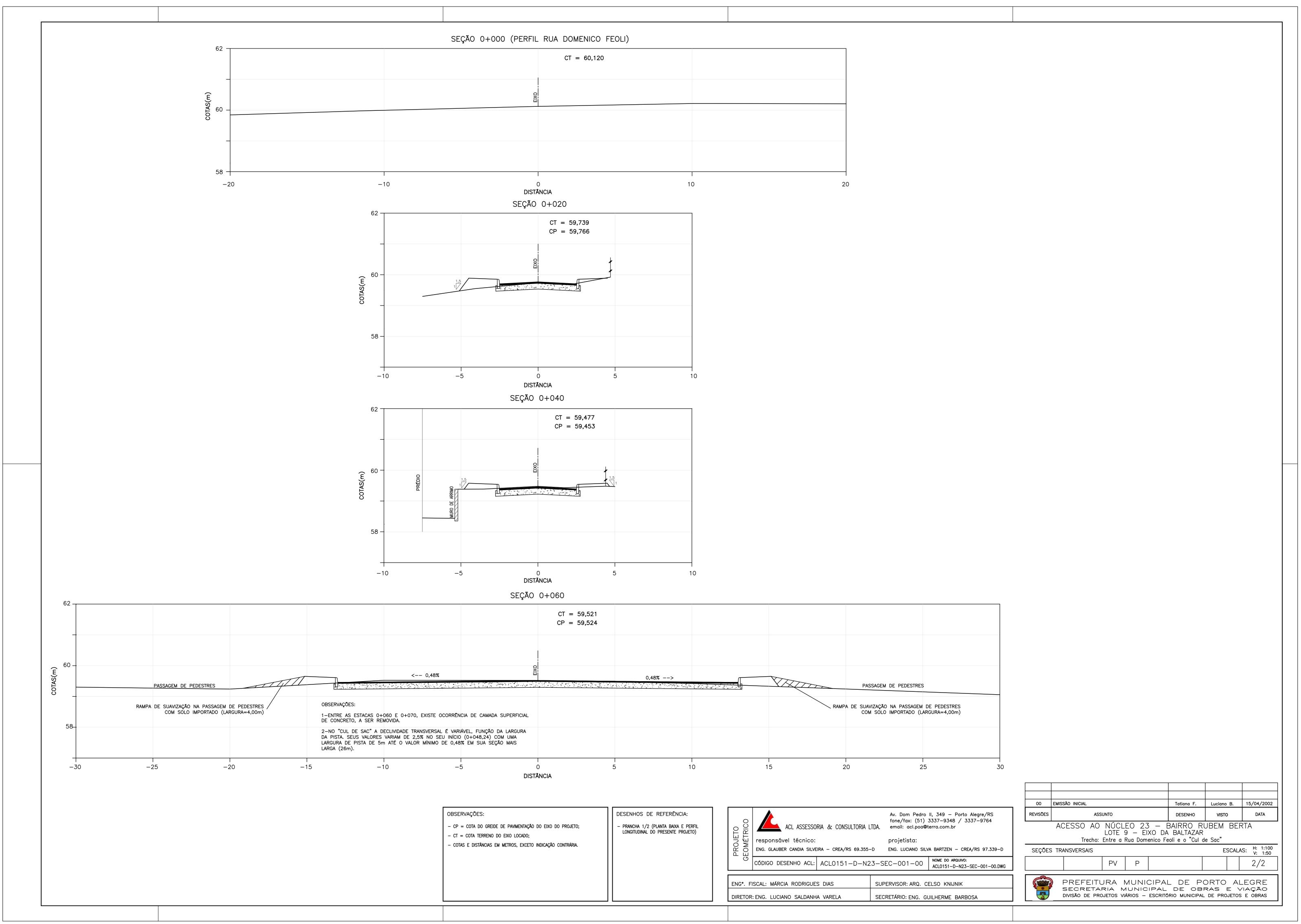


Foto 01: Vista a partir do final do trecho. À direita vislumbra-se lixeira e poste de concreto a serem deslocados.

Foto 02: Km 0+060, vista LE do núcleo 23. Local a implantar-se retorno ("cul de sac").

3 - PROJETO DE PAVIMENTAÇÃO

C:ISMOV/n23/Memo Ac N23.doc 31

3 - PROJETO DE PAVIMENTAÇÃO

3.1 - Estudos Geotécnicos

Os estudos geotécnicos foram executados com a finalidade básica de conhecer as características físicas dos materiais constituintes do subleito, de forma a se ter subsídios para a elaboração do projeto de pavimentação.

Assim, em conformidade com o item 2.8 dos Termos de Referência, foi concebido inicialmente um Plano de Investigações Geotécnicas, submetido e aprovado pela fiscalização da SMOV. Este plano contemplou a execução de sondagens a trado, com coleta de amostras representativas de solo do subleito, para execução de ensaios de laboratório geotécnico, e ensaios de campo para determinação do teor de umidade natural e da densidade "in situ". Todas as investigações foram executadas de acordo com a padronização estabelecida pela ABNT.

Observa-se, por outro lado, que por se tratar de obra urbana, sem previsão de grandes movimentos de terra, e em atendimento às orientações da SMOV, não foram executados estudos específicos de jazidas ou de fontes de materiais de construção, tais como areais e pedreiras. Estes materiais deverão ser obtidos em estabelecimentos comerciais já instalados na cidade de Porto Alegre e adjacências, sendo as areias obtidas junto aos depósitos do cais do Porto (provenientes do rio Jacuí) e os agregados pétreos em pedreiras comerciais de basalto e/ou de granito.

3.1.1 - Investigações Geotécnicas

As investigações geotécnicas foram precedidas de reconhecimento preliminar de campo, em conjunto com a fiscalização da SMOV, sendo definido um plano de sondagens.

a) Sondagem do Subleito

As investigações do subleito foram realizadas através de sondagens a trado e/ou a pá e picareta, com coleta de amostras.

A profundidade mínima investigada foi de 1,50 m abaixo do greide projetado sendo a amostragem realizada nos diversos horizontes de solo detectados. Considerando que o greide final seria definido com a evolução dos estudos geométricos, e embora devesse ser praticamente colante ao greide existente, optou-se pela execução de furos com profundidade da ordem de 2m (LS=2,0m) a partir do nível atual da rua existente, de forma a garantir a perfuração e amostragem das camadas do subleito.

As sondagens foram espaçadas no máximo em 50,00m, medidos no eixo da rua, alternando-se o bordo esquerdo, o eixo e o bordo direito. Devido a pequena extensão da rua não pavimentada, foram definidos e executados 3 furos de sondagem, denominados ST-01, ST-02 e ST-03, conforme apresentado nos boletins de sondagem a seguir. Os desenhos do projeto geométrico (planta baixa e perfil) apresentam a localização dos furos executados.

C:\SMOV\n2\siMemo Ac N23.doc

	ACL ASS	ESSORIA & (CONSUL	TORIA LTDA		BOLETIM DE SONDAGE Logradouro: Acesso ao Núcleo 23, Bairro Trecho: entre a rua Domenico Feoli e o "C	Período: 25/03/02			
FURO	ESTACA	POSIÇÃO	HOR.		MADA cm)	IDENTIFICAÇÃO DO MATERIAL	CONSIS- TÊNCIA	LENÇOL FREÁTICO	OBSERVAÇÕES	
				DE	Α			(cm)		
ST - 01	0+012,60	LD	1°	0	4	Revestimento primário			Furo localizado em frente ao portão de acesso ao prédio do lado direito.	
			2°	4	140	Silte arenoso cor marrom	Média	Seco		
			3°	140	200	Silte arenoso cor variegada	Média	Seco		
				Limite de sondagem	mite de sondagem					
ST - 02	ST - 02 0+040,80		0	60	Saibro com caliça cor marrom	Média	Seco	Furo localizado em frente ao prédio do lado esquerdo.		
			2°	60	150	Saibro com caliça cor cinza	Média	Seco		
			3°	150	200	Saibro siltoso cor variegada	Média	Seco		
				200	-	Limite de sondagem				
ST - 03	0+059,40	LE	1°	0	5	Revestimento primário			Afloramento de rocha e sobra de concreto,	
			2°	5	200	Silte arenoso cor variegada	Média	Seco	Furo localizado no "Cul de Sac" entre a lixeira e o poste de concreto.	
				200	-	Limite de sondagem				

b) Ensaios Geotécnicos de Campo

Em cada furo de sondagem foram executados ensaios de umidade natural a cada 0,50m de profundidade, isto é nas profundidades de 0,50, 1,00 e 1,50m, com o objetivo de melhor avaliar as variações da saturação do subleito.

Nos locais de determinação da umidade natural foram também executados ensaios de densidade "in situ" a cerca de 0,50m de profundidade, com o objetivo de determinar o grau de compactação do subleito atual.

A seguir apresentam-se as planilhas de cálculo com os resultados dos ensaios de campo (umidade e densidade "in situ"). Em síntese, os resultados "in situ" foram:

Quadro Resumo dos Ensaios de Campo - Interpretação

	Quadit	o i toodiiio	acc Encar	o de Camp	o interpre	otagao	
Furo	Estaca	Prof.	h _{nat}	γnat	γ_{s}	G.C.	Δh
		(m)	(%)	γ _{nat} (g/cm ³)	(g/cm ³)	(%)	(%)
ST-01	0+010	0+010 0,50 16,6		1,661	1,424	82,6	-1,6
		1,00	17,9				
		1,50	18,4				
ST-02	0+186	0,50	9,6	2,088	1,905	95,0	-1,6
		1,00	15,9				
		1,50	21,0				
ST-03	0+200,3	0,50	17,9	1,926	1,634	84,4	+6,4
		1,00	20,8				
		1,50	13,3				

Onde:

h _{nat} = teor de umidade natural (%);

 Δ h = desvio de umidade em relação à ótima (h _{nat} - h _{ótima}, em %);

 γ_{nat} = peso específico natural (g/cm³);

 γ_s = peso específico seco (g/cm³);

G.C. = Grau de Compactação ($\gamma_s / \gamma_{s \text{ máx}} \times 100$, em %).

Todos os furos apresentaram secos, isto é, sem interceptar o lençol freático. O teor de umidade natural variou entre 9,6 e 21,0%, observando-se tendência de aumento do teor de umidade a medida em que a profundidade aumenta.

Quanto ao grau de compactação, na camada ensaiada (prof. 0,50m), se observam que os valores oscilaram entre 82,6 e 95,0%, registrando-se piores condições de densificação no início do trecho (furo ST-01). Via de regra, o subleito apresenta condições satisfatórias de densificação.

Foi observado, por outro lado, existência de área com concreto e/ou contrapiso nas imediações da estaca 0+060, lado esquerdo, o qual deverá ser removido para implantação da pavimentação na região do alargamento (cul de sac).

Logradouro: Acesso ao Núcleo 23, Bairro Rubem Berta

Trecho: entre a rua Domenico Feoli e o "Cul de Sac"

Período: 21/03/02

Pág. 1/1

DENSIDADE DE CAMPO - MÉTODO CILINDRO CORTANTE

	DENSIDA	ADE DE	CAMPO	- WIET	JDO CIL	טאטאוו.	CORTA	NIE			
		DAD	OOS DE IE	DENTIFIC	AÇÃO DO	FURO					
Furo	ST - 01	ST - 01	ST - 01		ST - 02	ST - 02	ST - 02		ST - 03	ST - 03	ST - 03
Estaca	0+012,60	0+012,60	0+012,60		0+040,80	0+040,80	0+040,80		0+059,40	0+059,40	0+059,40
Profundidade (m)	0,50	1,00	1,50		0,50	1,00	1,50		0,50	1,00	1,50
Horizonte	1°	2°	3°		1°	2°	3°		1°	2°	3°
		D	ETERMIN	IAÇÃO D	E DENSIC	ADE					
Cilindro nº	03				03				03		
Peso do solo úmido + cilindro (g)	2.932				3.335				3.182		
Peso do cilindro (g)	1.366				1.366				1.366		
Peso solo úmido (g)	1.566				1.969				1.816		
Volume do cilindro (cm³)	943				943				943		
Dens. aparente úmida (g/cm³)	1,661				2,088				1,926		
Dens. aparente seca (g/cm³)	1,424				1,905				1,634		
		RE	SULTAD	OS DE C	OMPACT	AÇÃO					
Densidade Aparente Média (g/cm³)	1,424				1,905				1,634		
Densidade Máxima do Ensaio de Compactação (g/cm³)	1,725				2,005				1,935		
Grau de Compactação (%)	82,6				95,0				84,4		
			DETERMI	NAÇÃO I	DA UMIDA	ADE					
Cápsula nº	57	117	40		110	16	45		58	94	50
Peso solo úmido + cápsula (g)	131,2	101,9	134,2		119,6	124,3	135,3		127,4	139,6	125,1
Peso solo seco + cápsula (g)	116,9	90,1	118,4		111,3	111,9	117,5		113,1	121,3	114,2
Peso da água (g)	14,3	11,8	15,8		8,3	12,5	17,8		14,2	18,3	10,8
Peso da cápsula (g)	31,1	24,3	32,5		24,7	33,7	32,7		33,6	33,5	33,1
Peso solo seco (g)	85,8	65,8	85,8		86,6	78,2	84,8		79,6	87,8	81,2
Umidade em percentagem (%)	16,6	17,9	18,4		9,6	15,9	21,0		17,9	20,8	13,3

dens_insitu(Núcleo 23)

c) Ensaios Geotécnicos de Laboratório

Em laboratório, foram realizados os seguintes ensaios geotécnicos:

- análise granulométrica por peneiramento;
- limites de Atterberg (LL, LP);
- compactação na energia do Proctor Normal; e
- Índice de Suporte Califórnia (ISC);
- expansão, medida no ensaio ISC.

Os resultados destes ensaios, bem como as classificações visuais e de solos, permitiram a classificação geotécnica de acordo com a TRB — Transportation Research Board, antigo HRB/AASHTO, e embasam o projeto do pavimento das ruas. Em continuação apresentam-se as planilhas resumo dos ensaios geotécnicos.

Ao todo foram executados 6 conjuntos de ensaios, resultando nas seguintes ocorrências de materiais.

Resultados dos Ensaios – Classificação TRB (ex-HRB)

Classificação HRB	Ocorrência (ensaios)	%
A-2-4	3	50,0
A-4	2	33,3
A-6	1	16,7

Observa-se predominância de solos pertencentes ao grupo A-2-4 (50% das ocorrências), caracterizados como materiais granulares (areia grossa) do tipo saibro (de origem granítica). A previsão de comportamento geotécnico, pela classificação TRB, é bom a excelente.

Igualmente expressiva é a ocorrência de solos classificados como A-4 (33,3% das ocorrências), isto é, solos siltosos moderadamente plásticos, com mais de 50% das partículas sólidas passantes na peneira de 0,075mm (solos finos). Pela classificação geotécnica, a rigor, estes solos apresentam previsão de comportamento sofrível a mau, embora os valores de CBR não sejam inferiores a 7%.

Em menor escala (apenas uma amostra) ocorrem solos classificados como A-6, ou seja, solos argilo-arenosos com plasticidade média. Os solos deste grupo normalmente sofrem elevada mudança de volume entre os estados seco e úmido, o que determina uma previsão de subleito classificada entre sofrível a mau. Este fato é comprovado pelo elevado teor de umidade natural, constatado no furo ST-01.

Quanto às características de expansividade, medidas no ensaio de CBR, não se observaram tendências, sendo os resultados de expansão não superiores a 1,2%.

	L ACL	. ASSESSO	RIA & CO	ONSULTO	RIA LTD	A		Logra	adouro:	Aresso							AIOS DE				li e o "Cı	ıl de S	Sac"	Dat	a: 15/04/02
Loca	l de Son	dagem Profund.	Furo				Análise	_			40 1440	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Dail o IX	Ens	aios icos		sificação	Compa	ctação	0100	I.S.			Tip	oo de Solo
Estaca	ção	(m)		50 mm	25 mm	19 mm	9 mm	Nº 4	Nº 10	Nº 20	Nº 40	Nº 60	Nº 200		IP	IG	HRB	D máx.	h ót.	h	Dens.	Ехр.	ISC	Classificação AASHO	Classificação Visual
0+012,60	LD	0,00 - 0,04	ST - 01																						Revestimento primário
		0,04 - 1,40)			100,0	99,7	97,2	91,9	76,4	60,2	49,5	37,5	39	6	1	A-4	1,725	18,2	17,4	1,707	0,2	17	Silte arenoso	Silte arenoso cor marrom
		1,40 - 2,00)				100,0	99,9	93,7	78,5	59,1	50,0	40,1	36	11	1	A-6	1,894	11,1	10,3	1,884	1,2	9	Argila arenosa	Silte arenoso cor variegada
0+040,80	LE	0,00 - 0,60	ST - 02	100,0	70,2	69,3	65,0	58,3	47,1	37,4	26,9	20,5	13,3	27	7	0	A-2-4	2,005	10,2	9,6	1,985	0,0	15	Areia siltosa com pedregulho	Saibro com caliça cor marrom
		0,60 - 1,50)	87,6	76,2	75,5	74,1	70,1	64,0	54,1	40,3	31,1	22,4	31	10	0	A-2-4	1,945	11,2	11,7	1,920	0,0	10	Areia siltosa com pedregulho	Saibro com caliça cor cinza
		1,50 - 2,00)				100,0	99,6	99,4	73,9	53,5	43,4	33,5	37	10	0	A-2-4	1,943	11,3	11,1	1,942	0,6	13	Areia siltosa	Saibro siltoso cor variegada
0+059,40	LE	0,00 - 0,05	ST - 03																						Revestimento primário
		0,05 - 2,00)			100,0	99,7	99,5	95,4	78,2	57,6	48,0	35,6	36	9	0	A-4	1,935	11,5	10,2	1,946	0,3	7	Silte arenoso	Silte arenoso cor variegada

3.1.2 – Determinação do Índice Suporte de Projeto

Devido a pequena extensão da rua a ser pavimentada foram executados apenas 3 furos de sondagem, conforme já apresentado.

Analisando-se os resultados destas sondagens e as ocorrências das camadas de solo no perfil do subleito, bem como as indicações do projeto geométrico que definiu a implantação da pavimentação com greide aproximadamente colante, foram selecionados os resultados de ensaios de CBR correspondentes às camadas de solo do subleito imediatamente abaixo da futura estrutura de pavimento a ser projetada. As camadas superficiais de solo, atualmente existentes, deverão ser removidas, para execução de terraplenagem em seção "caixão" conforme indicado nas seções transversais do projeto.

Assim, como se dispõe de apenas 3 resultados de ensaios de CBR nestes horizontes, uma análise estatística mais detalhada se torna inviável. Alternativamente, atendendo sugestão da fiscalização da SMOV, foi definido pela utilização da média aritmética como critério determinante para a estimativa do Índice Suporte de Projeto (ISP).

Nestes termos, obtiveram-se os seguintes resultados:

Resultados Individuais dos ensaios de CBR, na camada de interesse:

- 17% (ST-01, prof. entre 0,04 e 1,40m);
- 10 % (ST-02, prof. entre 0,60 e 1,50m); e
- 7% (ST-03, prof. entre 0,05 e 2,00m);

Média Aritmética = 11,3%

Desvio Padrão = 5,1%

Do exposto, foi adotado **ISP = 11%**, valor este considerado mais representativo da realidade do subleito da rua, correspondente aproximadamente a média dos valores registrados nos ensaios geotécnicos.

3.1.3 – Relatório da EPTC

A SMOV forneceu à projetista o relatório da EPTC, apresentado a seguir, que informa não haver previsão de passagem de Linhas de Ônibus na rua em questão.

Processo:	Folha N° :

À GPN

Foram verificadas as seguintes vias solicitadas, pertencentes às regiões Norte e Leste de Porto Alegre:

- Humberto Albino Bianchi: Não há previsão.
- Acesso E-2 Loteamento Mário Quintana : Não há previsão.
- Beco 3 Vila Teodora: Não há previsão.
- Rua Mario Schenini Cadermatori: Há atualmente fluxo de ônibus na via citada da Rua Frederico Mentz à Rua Jaime Topolar. Linha 703.
- Rua Nossa senhora da Boa Viagem: Há previsão de passagem da linha 718 em ambos os sentidos.
- Rua Thomaz Francisco de Jesus: Há previsão de passagem da linha 471.
- Rua Jordão: Há previsão de passagem das 470, 471 e 671.
- Rua 2972 e 2971: Não foi possível localizar.
- Travessa Ubirajara: Não há previsão.
- Rua Girassol: Não há previsão.
- Rua Dona Luiza: Não há previsão.
- Rua Walt Disney: Há previsão de passagem da R32.
- Rua Berlim: Há previsão de passagem da R32/397/397.2/397.3.
- Rua Tanauí da Silva Ribeiro: Há previsão de passagem da R32.
- Rua Ponche Verde: Não há previsão.
- Rua Jaguarí: Não há previsão.
- Rua "A" Chacara das Pedras: Não há previsão.
- Rua Esperança: Não há previsão.
- Rua Tocantis: Não há previsão.
- Rua Alvorada: Não há previsão.
- Rua Vicinal 1: Não há previsão.
- Acesso 12 Vila Nova São Carlos: Não há previsão.
- Rua 12 Vila Mapa: Não há previsão.
- Rua Santa Bárbara: Não há previsão.
- Rua Umbertina: Não há previsão.
- Acesso H2, G2, F2 : Não há previsão.

Processo:	Folha N° :

- Beco Um Calçadão: Não há previsão.
- Rua Deodoro: Não há previsão.
- Rua Marques Rabelo: Não há previsão.
- Rua 8 Timbaúva: Há previsão de passagem da A62.
- Rua 1949 Wenceslau Fontoura: Não há previsão.
- Rua Alceri Garcia Flores Chico Mendes: Não há previsão.
- Rua "N" Vila São Judas Tadeu
- Rua Santa Maria: Não há previsão.
- Rua Ivo Janson: Não há previsão.
- Rua Clarinda Sigueira: Não há previsão.
- Rua "D" do Campo da Tuca: Há previsão de passagem da 347.
- Rua São João: Não há previsão.
- Rua Encantadora: há previsão de passagem da 348.
- Rua Jesus Linares Guimarães: Não há previsão.
- Rua Padre Mascarenhas: Não há previsão.
- Rua Euclides Miranda: Há previsão de passagem da 353.
- Av Comunitária Vila São José: Há previsão de passagem da A46.
- Av Vitória: Há previsão de passagem da 429.2.
- Acesso 23 Loteamento Rubem Berta: Não há previsão.
- Acesso 31 Loteamento Rubem Berta: Há previsão de passagem da A96, A99.1, A99, A99.2, A99.3.
- Estrada da Pedreira: Há previsão de passagem da A94, A94.2.
- Terceira Perimetral: Em Anexo.
- * Em anexo, constam todas as tabelas das linhas citadas, a fim de permitir o cálculo do volume previsto nas vias.

Quanto às vias localizadas nas regiões Centro e Sul, sugiro o encaminhamento à GPS para análise.

3.2 - Determinação do Número N

O número de operações do eixo padrão (N), conforme estabelecido pelos Termos de Referência do Edital de Licitação, foi calculado para um período de projeto estimado em 10 anos. A metodologia utilizada seguiu as recomendações do Manual de Pavimentação do DNER (1996)¹.

Para o cálculo do número N interessa inicialmente definir o volume médio de tráfego no ano de abertura (V1), num sentido, e uma taxa ("t", em %) de crescimento anual, em progressão geométrica. O volume total de tráfego (Vt), num sentido, durante o período de "P" anos, é dado pela equação:

$$Vt = {365 V1[(1+t/100)^{P} -1]}/(t/100)$$

O número N será dado então por:

$$N = Vt \times (FE) \times (FC)$$
, onde $(FE) \times (FC) = FV$, ou seja

N = Vt x (FV), onde:

FE = Fator de Eixos:

FC = Fator de Carga;

FV = Fator de Veículo; todos dependentes da composição do tráfego.

Na análise da provável composição da frota e para definição do volume diário médio (VDM) do tráfego, é necessário inicialmente levar em conta às seguintes considerações:

- O Acesso em questão atualmente (abril/2002) se encontra interrompido e apenas com tráfego/acesso local;
- Segundo informações da própria Prefeitura, através do relatório da EPTC, se verifica que não há previsão de passagem de linhas de ônibus;

Admitindo-se válidas estas premissas, com exclusão do tráfego de ônibus, procedeu-se ao levantamento de campo, com medições estimativas do tráfego local e existência de pontos de comércio, com ênfase para avaliação da passagem de caminhões. Cumpre ressaltar que em abril/02 não haviam estabelecimentos comerciais com testada voltada para o acesso. Todos os locais de comércio estavam localizados ao longo da rua Domenico Feoli.

Em especial, foi anotada a freqüência de passagem do caminhão do lixo, avaliada em 3 vezes por semana. Segundo informações do DMLU a carga e a freqüência dos caminhões deve ser considerada da seguinte forma:

- veículo compactador com capacidade de 15m3, toco;
- peso bruto total = 19 ton.;

C:\SMOV\n23\Memo Ac N23.doc 41

_

¹ Manual de Pavimentação (1996), Departamento Nacional de Estradas de Rodagem, Rio de Janeiro, 2ª Edição, IPR Publicação 697, 320p.

- tara do caminhão = 10 ton.;
- distribuição por eixo = 70% no traseiro e 30% no dianteiro.

A passagem do veículo na rua, apesar de ser 3 vezes por semana, tem a agravante da rua ser interrompida. Isto determina que, sobre um mesmo ponto, o veículo passe duas vezes, o que duplica a incidência de passagem. Assim, para fins práticos, foi considerada uma passagem do caminhão do lixo duas vezes na mesma via, três vezes por semana, o que resulta numa freqüência média de uma passagem por dia.

Ainda sobre o caminhão do lixo, cumpre destacar que a estimativa da carga por eixo foi realizada considerando-se a média da plena carga (19 ton. x 0,7 = 13,3 ton.) e da meia carga (14,5 ton. x 0,3 = 10,15 ton.). Desta forma, sobre o eixo traseiro resulta aproximadamente 12 ton., enquanto no eixo dianteiro foi admitida uma carga de até 8 ton.

O Quadro abaixo apresenta um resumo geral da natureza e da estimativa de composição da frota de caminhões, bem como do Volume Médio Diário, que se espera para o ano de abertura ao tráfego.

Composição e Estimativa da Frota de Veículos Diários

Comp	Composição e Estimativa da Frota de Velculos Dianos														
Frota de	VDM	Freqüênd	cia Diária de	e Eixos	Total de										
Caminhões	(veic./dia)	5 ton.	8 ton.	12 ton.	Eixos										
Pesado (Lixo)	1		1	1	2										
Médio (comerciais)	1	1	1		2										
Leve (comerciais)	0				0										
Total	2	1	2	1	4										

Nota: foram desconsiderados veículos tipo automóveis, embora calculáveis, pois sua influência é desprezível.

Observa-se que, pela estimativa do VDM, o segmento de rua em questão se enquadra como via local, recomendando o enquadramento como **CLASSE 2** conforme estabelecido pelo Termo de Referência.

A partir na análise destes dados de campo, o Quadro a seguir mostra o cálculo dos Fatores de Carga, ponderados para cada tipo de eixo.

Cálculo do Fator de Carga - FC

			ator ao oarga	· ·
Eixo	Nº de Eixos	%	Fator de Equivalência	Fator de Carga
5 ton.	1	25,0	0,1	2,5
8 ton.	2	50,0	1,0	50,0
12 ton.	1	25,0	9,0	225,0
Total	4	100,0		277,5

Nota: os Fatores de Equivalência foram obtidos do ábaco da pág. 206, do Manual de Pavimentação DNER (1996)

2,775 F0	C=Soma/100
----------	------------

Considerando-se um Fator de Eixos FE=2,0, um Fator Regional FR=1,0, e adotando-se uma taxa de crescimento anual de t=5% num período de P=10 anos, em progressão geométrica, tem-se a seguinte estimativa total do Valor de N no horizonte de projeto:

$$N = 2,775 \times 2 \times \{365 \times 2 \times [(1+5/100)^{10} -1]\} / (5/100)$$

$$N = 5,10 \times 10^4$$

3.3 – Dimensionamento da Estrutura do Pavimento

O dimensionamento do pavimento foi realizado a partir das formulações definidas pelo Método Murillo, do DNER.

Partindo-se de ISP = 11%, definido pelos Estudos Geotécnicos, e N_{calc} =5,10x10⁴ (< 10⁶), a pavimentação da rua foi ratificada com critério de enquadramento como Classe 2 (via local).

Para enquadramento na Classe 2, a espessura de revestimento asfáltico, tipo CBUQ (Concreto Asfáltico Usinado a Quente), resulta numa espessura real de 4cm, a ser aplicada sobre Base Granular. Especifica-se que a camada de concreto asfáltico deverá se enquadrar na Faixa II do Caderno de Encargos da SMOV.

A Base Granular foi definida como Brita Graduada, compactada até atingir no mínimo 100% em relação ao ensaio Proctor Modificado de referência.

Assim, considerando os seguintes fatores de equivalência estrutural:

- Para CBUQ: Kr = 2,0;
- Para Camadas Granulares: K = 1,0;

Bem como o ábaco apresentado no item 3.3 do Termo de Referência, que leva em conta as inequações do método do DNER, foi possível adotar as seguintes espessuras para as camadas do pavimento.

Estrutura do Pavimento da Rua

Camada	Tipo de Material	Espessura Real (cm)
Revestimento	CBUQ	4,00
Base Granular	Brita Graduada	19,00
	Total	23,00

3.4 - Substituição de Solos Inadequados

Em princípio, salvo ocorrência de fatos supervenientes, não estão previstas substituições de solos inadequados no segmento de pavimento projetado.

3.5 - Especificações Técnicas

As obras deverão ser executadas em conformidade com o Caderno de Encargos da SMOV/PMPA, relativos as obras de pavimentação. Onde houver omissão ou necessidade de complementação, deverão ser obedecidas as Especificações Gerais de Serviços pertinentes padronizadas pelo DNER.

4 - PROJETO DE DRENAGEM SUPERFICIAL

C:ISMOV/n23/Memo Ac N23.doc 45

4 - PROJETO DE DRENAGEM SUPERFICIAL

4.1 - Estudos Hidrológicos

O tempo de recorrência adotado na determinação da intensidade de chuva foi de 5 anos, para a microdrenagem e 10 anos para a macrodrenagem, conforme orientações do DEP – Departamento de Esgotos Pluviais, da PMPA.

A equação da chuva para determinação dos valores de intensidade pluviométrica (I) foi baseada na expressão:

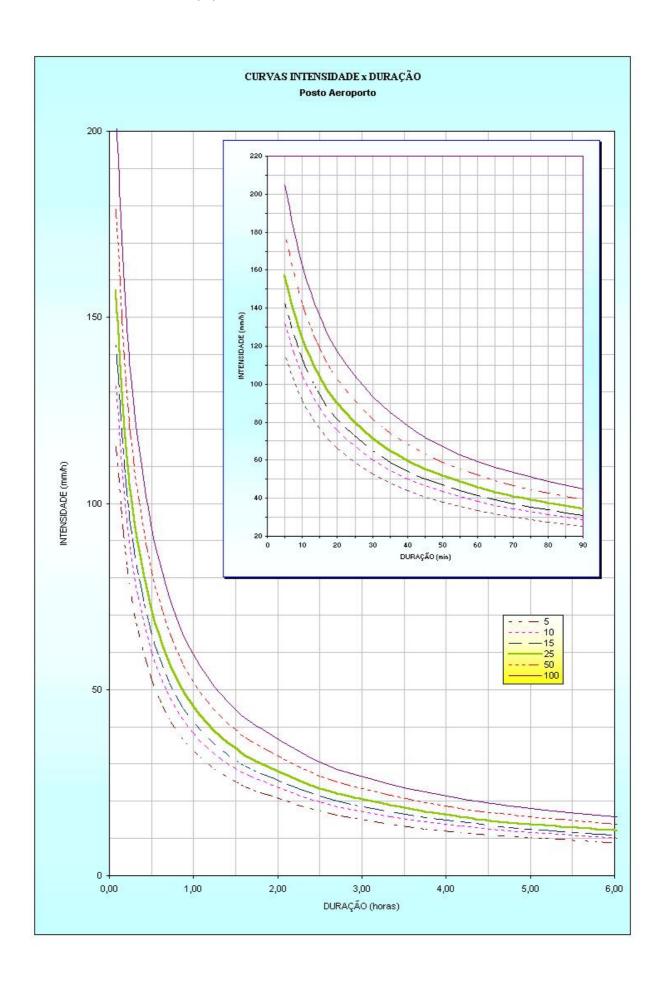
$$I_{max} = \frac{a.Tr^b}{(td+c)^d}$$

Sendo:

I_{máx} = intensidade máxima em mm/h;

 T_r = tempo de recorrência em anos;

td = tempo de duração da precipitação que deve ser igual ao tempo de concentração em minutos;


a, b, c, e = parâmetros relativos às unidades empregadas e próprias do regime pluviométrico local.

De acordo com o zoneamento estabelecido pelo DEP, a expressão da equação da chuva para determinação dos valores de intensidade pluviométrica deverá corresponder ao Posto Aeroporto, onde se insere o local objeto de projeto.

Desta forma, a fórmula para a obtenção da intensidade de chuva de projeto utilizada tem a seguinte apresentação:

$$I_{m\acute{a}x} = \frac{748,342.Tr^{0,191}}{(td+10)^{0,803}}$$

Na página seguinte apresenta-se o gráfico de Intensidade-Duração-Freqüência (curvas IDF) obtido a partir da fórmula anteriormente descrita para as intensidades pluviométricas no Posto Aeroporto. Nele são demonstradas curvas para tempos de recorrência de 5, 10, 15, 25, 50 e 100 anos. Para efeitos de cálculo de intensidade pluviométrica, foram utilizados os resultados numéricos destas fórmulas, sendo estes gráficos somente apresentados de forma a ilustrar e orientar o comportamento pluviográfico provável nos postos estudados.

4.2 - Memória Justificativa

As diretrizes e soluções indicadas para o projeto de drenagem superficial do trecho em apreço foram estabelecidas a partir do conhecimento dos pontos de deságüe e do projeto geométrico.

Assim, a concepção de projeto contempla basicamente a questão das águas pluviais, sua captação, condução e encaminhamento final.

O sistema poderá eventualmente, a critério do DEP, receber contribuições de esgotos domésticos, desta forma atuando como sistema unitário de esgotos. Assim, pode-se prever uma rede complementar, exclusiva para esgoto sanitário, permitindo a ligação do efluente cloacal de todas as habitações.

A concepção do sistema seguiu as orientações e critérios do Departamento de Esgotos Pluviais da Prefeitura Municipal de Porto Alegre - DEP, bem como o Caderno de Encargos do Município de Porto Alegre, Volume 4 - Esgotos Pluviais.

4.2.1 - Captação

A captação será feita mediante a utilização de bocas-de-lobo. A ligação entre as bocas-de-lobo e os PVs (poços de visita) será executada com tubulação de diâmetro de 30cm.

A previsão de bocas-de-lobo é embasada na capacidade de absorção das mesmas e nas condições de vazão da sarjeta, desde que sejam atendidos os limites estabelecidos no Caderno de Encargos - Vol. 4.

4.2.2 - Traçado da Rede

O traçado da rede levou em consideração, entre outros, os seguintes aspectos principais:

- condição atual da via urbana;
- existência de meio-fio junto aos passeios laterais;
- largura dos passeios;
- possibilidade de funcionamento como rede mista;
- condições de operação e manutenção da rede;
- ponto de lançamento final.

Tendo-se em conta estas considerações iniciais, bem como os elementos dos estudos hidrológicos, partiu-se para a concepção do sistema de esgotamento pluvial.

O traçado da tubulação condutora das águas pluviais, considerados os aspectos antes relacionados, se efetuará normalmente em um dos lados, e preferencialmente sobre os passeios, respeitando as interferências com benfeitorias existentes. O recobrimento mínimo a ser obedecido será de 0,60m nos passeios e 1,00m na pista,

C:ISMOV/n23IMemo Ac N23.doc 48

conforme a boa técnica recomenda. Caso não seja possível atender estes critérios, as tubulações deverão ser envelopadas. Também deverão ser envelopados todos os coletores de fundo, independentemente de seu diâmetro e profundidade.

Os poços de visita (PV) foram previstos estrategicamente na rede coletora, conforme os seguintes critérios:

- distância máxima consecutiva de 50m entre PVs;
- as mudanças de diâmetro, direção e declividade da tubulação;
- nas interligações de tubulações;
- a altura máxima dos PVs será de 2,50m;
- e o ressalto (degrau) máximo de 1,20m.

Por outro lado, também é importante salientar que a concepção do traçado da rede seguiu criteriosamente os aspectos de lançamento final dos esgotos, sendo estes em local de plena assimilação, definidos pelo DEP.

4.2.3 - Cálculo das Vazões

Na determinação das vazões foi utilizado o Método Racional, escolhido por ser o método mais indicado para pequenas bacias de contribuição.

O valor do coeficiente de escoamento médio ponderado ou "run-off" adotado, foi de C=0,60 por tratar-se de áreas urbanas não centrais.

O tempo de concentração referente as contribuições externas a via, foi calculado pela fórmula de KIRPICH, cuja expressão é:

$$tc = 0.01947.\frac{L^{0.77}}{i^{0.385}}$$

Sendo:

Tc = tempo de concentração em minutos;

L = comprimento do talvegue em metros;

i = declividade média do talvegue em metros por metros.

No caso de cabeceiras de rede, quando não existirem contribuições externas, o tempo de concentração inicial adotado foi de 5 minutos.

4.2.4 - Locais de Lançamento

O local indicado pela fiscalização do DEP, para o lançamento das águas pluviais captadas pela rede de drenagem projetada, será a rede existente localizada na Rua Domênico Feoli.

4.3 - Cálculos Hidráulicos

4.3.1 – Sistemática de Cálculo

Os cálculos hidráulicos foram efetuados através de uma sistemática largamente utilizada em trabalhos de engenharia pluvial urbana. Utilizou-se, através de processamento computacional, planilhas de dimensionamento hidráulico, em excel.

Inicialmente, foram numerados os coletores individualizados pelos pontos de lançamento final dos esgotos. Os subtrechos foram identificados em ordem de importância, sendo colocados na coluna 1 da referida planilha.

As colunas 2 e 3 identificam os vértices do subtrecho, de montante para jusante.

A coluna 4 apresenta a extensão entre os vértices.

As áreas contribuintes, no subtrecho e acumuladas, são apresentadas nas colunas 5 e 6.

As cotas dos tampos dos PVs são apresentadas nas colunas 7 e 8 (correspondente as cotas do passeio).

A coluna 9 apresenta a declividade longitudinal do terreno superficial ao longo do subtrecho em questão.

O tempo de concentração (Tc) é apresentado na coluna 10, sendo acumulados pelo tempo de percurso, calculado na coluna 18.

A intensidade de chuva adotada é apresentada na coluna 11.

A vazão de dimensionamento é apresentada na coluna 12.

A coluna 13 identifica o diâmetro adotado para o subtrecho, função de sua declividade, conforme a coluna 14.

A vazão obtida a plena seção do tubo é apresentada na coluna 15.

As velocidades, a plena seção (V DN) e de dimensionamento (V N), são apresentadas nas colunas 16 e 17.

As cotas que definem o greide da tubulação estão lançadas nas colunas 19 e 20.

4.3.2 - Planilhas de Dimensionamento

A seguir apresentam-se as planilhas correspondentes aos cálculos hidráulicos, conforme os procedimentos descritos acima.

REDE DE ESGOTO PLUVIAL

POSTO: AEROPORTO

OBRA: ACESSO AO NÚCLEO 23 - EIXO BALTAZAR

Coef. Run-Off:

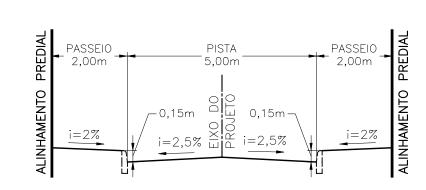
TR: 5 ANOS

AZAR PLANILHA DE DIMENSIONAMENTO

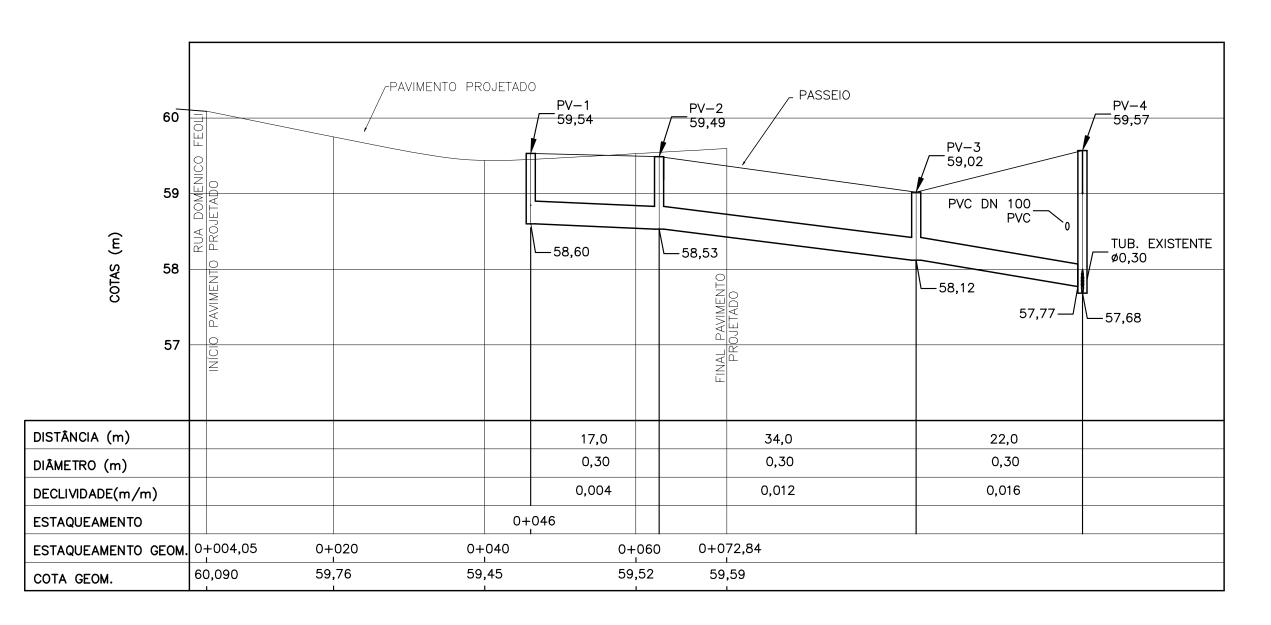
0,6

coeficiente de Manning n= 0,013

1/1


ONT.	JUS.	L	AREA	. 1				TC	INTENS.		DN					Тр	1	GREIDE
	JUS.					RUA (m)	RUA		iit i Litto.	PROJ.		CANAL	CANAL	V DN	VN	, ,	TUBULA	ÇÃO (m)
2		(m)	TRECHO	ACUM.	MONT.	JUS.	m/m	(min)	(mm/h)	(l/s)	(m)	(m/m)	(l/s)	(m	/s)	(min)	MONT.	JUS.
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
'V-01																		58,53
V-02																		58,12
'V-03	PV-04	22,00	0,09	0,68	59,02	59,57	-0,025	5,63	112	127	0,30	0,016	132	1,92	1,97	0,19	58,12	57,77
	V-01 V-02	V-01 PV-02 V-02 PV-03	V-01 PV-02 17,00 V-02 PV-03 34,00	V-01 PV-02 17,00 0,34 V-02 PV-03 34,00 0,25	V-01 PV-02 17,00 0,34 0,34 V-02 PV-03 34,00 0,25 0,59	V-01 PV-02 17,00 0,34 0,34 59,54 V-02 PV-03 34,00 0,25 0,59 59,49	V-01 PV-02 17,00 0,34 0,34 59,54 59,49 V-02 PV-03 34,00 0,25 0,59 59,49 59,02	V-01 PV-02 17,00 0,34 0,34 59,54 59,49 0,003 V-02 PV-03 34,00 0,25 0,59 59,49 59,02 0,014	V-01 PV-02 17,00 0,34 0,34 59,54 59,49 0,003 5,00 V-02 PV-03 34,00 0,25 0,59 59,49 59,02 0,014 5,29	V-01 PV-02 17,00 0,34 0,34 59,54 59,49 0,003 5,00 116 V-02 PV-03 34,00 0,25 0,59 59,49 59,02 0,014 5,29 114	V-01 PV-02 17,00 0,34 0,34 59,54 59,49 0,003 5,00 116 66 V-02 PV-03 34,00 0,25 0,59 59,49 59,02 0,014 5,29 114 112	V-01 PV-02 17,00 0,34 0,34 59,54 59,49 0,003 5,00 116 66 0,30 V-02 PV-03 34,00 0,25 0,59 59,49 59,02 0,014 5,29 114 112 0,30	V-01 PV-02 17,00 0,34 0,34 59,54 59,49 0,003 5,00 116 66 0,30 0,004 V-02 PV-03 34,00 0,25 0,59 59,49 59,02 0,014 5,29 114 112 0,30 0,012	V-01 PV-02 17,00 0,34 0,34 59,54 59,49 0,003 5,00 116 66 0,30 0,004 66 V-02 PV-03 34,00 0,25 0,59 59,49 59,02 0,014 5,29 114 112 0,30 0,012 114	V-01 PV-02 17,00 0,34 0,34 59,54 59,49 0,003 5,00 116 66 0,30 0,004 66 0,96 V-02 PV-03 34,00 0,25 0,59 59,49 59,02 0,014 5,29 114 112 0,30 0,012 114 1,66	V-01 PV-02 17,00 0,34 0,34 59,54 59,49 0,003 5,00 116 66 0,30 0,004 66 0,96 0,97 V-02 PV-03 34,00 0,25 0,59 59,49 59,02 0,014 5,29 114 112 0,30 0,012 114 1,66 1,69	V-01 PV-02 17,00 0,34 0,34 59,54 59,49 0,003 5,00 116 66 0,30 0,004 66 0,96 0,97 0,29 V-02 PV-03 34,00 0,25 0,59 59,49 59,02 0,014 5,29 114 112 0,30 0,012 114 1,66 1,69 0,33	V-01 PV-02 17,00 0,34 0,34 59,54 59,49 0,003 5,00 116 66 0,30 0,004 66 0,96 0,97 0,29 58,60 V-02 PV-03 34,00 0,25 0,59 59,49 59,02 0,014 5,29 114 112 0,30 0,012 114 1,66 1,69 0,33 58,53

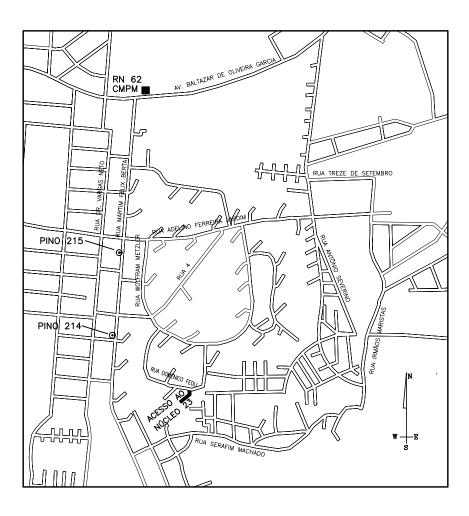
4.4 - Especificações Técnicas


Os serviços de drenagem superficial deverão ser executados conforme as recomendações do caderno de encargos do Departamento de Esgotos Pluviais da Prefeitura Municipal de Porto Alegre, DEP-CE/92.

4.5 - Desenhos do Projeto de Drenagem Pluvial

A seguir são apresentados os desenhos do projeto de drenagem, devidamente aprovados pelo DEP.

SEÇÃO TIPO ESC. HORIZONTAL 1:100 ESC. VERTICAL 1:50



COTA TAMPA=60,28 COTA FUNDO=58,61 COTA TAMPA=59,32 COTA FUNDO=57,34 PLANTA BAIXA

ESC. 1:500

PERFIL DA REDE PLUVIAL PROJETADA ESC. HORIZONTAL 1:500 ESC. VERTICAL 1:50

PLANTA DE SITUAÇÃO E REFERÊNCIAS PLANIALTIMÉTRICAS S/ ESC.

REFERÊNCIAS PLANIALTIMÉTRICAS

Datum: Carta Geral			CMPN	И
N° DO PINO	ABSCISSAS	ORDENADAS	RN	COTA
2987.2C 214	189.607,645	1.677.192,981	062	43,712m
2987.2C 215	189.621,288	1.677.432,359		

	CONVENÇÕES	5.:	
	EXISTENTE	PROJETADA	A DEMOLIR
BOCA DE LOBO		-	280
POÇO DE VISITA			⊠
POÇO DE VISITA C/ TAMPA FF	0	•	
POÇO VISITA SANIT. TAMPA FF	•		
REDE PLUVIAL			
REDE SANITÁRIA	-E->-C-E	< E < 1 0	
REDE DE ÁGUA			
VALA	~~~~~		

LEGENDA

ENVELOPAMENTO (PLANTA BAIXA)

ENVELOPAMENTO (PERFIL)

01	APRESENTAÇÃO PERFIL GEOMÉTRICO	Cássio R.	Luciano B.	08/07/2002
00	EMISSÃO INICIAL	Cássio R.	Luciano B.	19/06/2002
EVISÕES	ASSUNTO	DESENHO	VISTO	DATA

PREFEITURA MUNICIPAL DE PORTO ALEGRE DEPARTAMENTO DE ESGOTOS PLUVIAIS

PROJETO DE ESGOTO PLUVIAL ACESSO AO NÚCLEO 23 - LOTEAMENTO RUBEM BERTA PLANTA BAIXA E PERFIL DA REDE PLUVIAL PROJETADA

PRANCHA

ENG. LUCIANO S. BARTZEN ACL ASSESSORIA & CONSULTORIA LTDA.

ENG. JORGE A. P. MOOJEN DIRETOR DE DIVISÃO

ENG. MAGDA CARMONA CHEFE DE SEÇÃO

AIRTO FERRONATO DIRETOR DEP

DESENHO: ESCALA: CÁSSIO R. INDICADA JUNHO/2002

ACL0151-D-N23-PLU-001-01

5 - ORÇAMENTO